Alolyan Ruba A, Wazzan Nuha
King Abdulaziz University, Chemistry Department, Faculty of Science, P.O. Box 42805 Jeddah 21589, Saudi Arabia.
King Abdulaziz University, Chemistry Department, Faculty of Science, P.O. Box 42805 Jeddah 21589, Saudi Arabia.
J Mol Graph Model. 2025 May;136:108968. doi: 10.1016/j.jmgm.2025.108968. Epub 2025 Feb 3.
Dye-sensitized solar cells (DSSCs) are cost-effective and environmentally sustainable alternatives to traditional solar cells. In this study, two groups of novel metal-free organic (MFO) sensitizers (A1 and A2) were designed by modifying the experimentally tested WS-9 dye (E)(E)(E)-2-cyano-3-(3'-hexyl-5'-(7-(4-phenyl-1,2,3,3a,4,8b-hexahydrocyclopenta[b]indol-7-yl)benzo[c][1,2,5]thiadiazol-4-yl)-[2,2'-bithiophen]-5-yl)acrylic acid), which has a D-A-π-A structure and a power conversion efficiency (PCE) of 9.02 %. The designed dyes incorporated two distinct donor cores -indoline (D1) and 2-diphenylaminothiophene (D2)- and a range of electron-donating groups (J to O), resulting in 12 novel dyes with enhanced electron-donating abilities. Their geometrical, optical, electronic, and electrochemical properties were studied using density functional theory (DFT) and time-dependent DFT (TD-DFT) methods, combined with the Conductor-like Polarizable Continuum Model (CPCM) to simulate solvent effects (dichloromethane). Additionally, the adsorption behavior of the dyes on TiO₂ clusters was investigated by calculating adsorption energies and analyzing UV-Vis spectra. The results show significant improvements in the dyes' intramolecular charge transfer (ICT) properties compared to the reference WS-9 dye. A maximum red-shift of 109 nm in the absorption spectrum, an extended excited-state lifetime of 4.95 ns, and lower chemical hardness were observed, accompanied by enhanced electron injection (ΔG > 0.2 eV) and dye regeneration (ΔG > 0.15 eV) efficiencies. Furthermore, the dyes exhibited large Stokes shifts (231.64-177.62 nm) and superior nonlinear optical (NLO) properties. These findings suggest that the newly designed dyes are highly promising candidates for DSSC applications, offering enhanced light-harvesting capabilities and improved photoelectrical performance.
染料敏化太阳能电池(DSSCs)是传统太阳能电池具有成本效益且环境可持续的替代方案。在本研究中,通过对经过实验测试的WS-9染料(E)(E)(E)-2-氰基-3-(3'-己基-5'-(7-(4-苯基-1,2,3,3a,4,8b-六氢环戊并[b]吲哚-7-基)苯并[c][1,2,5]噻二唑-4-基)-[2,2'-联噻吩]-5-基)丙烯酸进行修饰,设计了两组新型无金属有机(MFO)敏化剂(A1和A2),该染料具有D-A-π-A结构,功率转换效率(PCE)为9.02%。所设计的染料包含两个不同的供体核心——吲哚啉(D1)和2-二苯胺基噻吩(D2)——以及一系列供电子基团(J至O),从而产生了12种具有增强供电子能力的新型染料。使用密度泛函理论(DFT)和含时DFT(TD-DFT)方法,并结合类导体极化连续介质模型(CPCM)来模拟溶剂效应(二氯甲烷),研究了它们的几何、光学、电子和电化学性质。此外,通过计算吸附能和分析紫外-可见光谱,研究了染料在TiO₂簇上的吸附行为。结果表明,与参考WS-9染料相比,这些染料的分子内电荷转移(ICT)性质有显著改善。在吸收光谱中观察到最大红移109 nm,激发态寿命延长至4.95 ns,化学硬度降低,同时电子注入(ΔG>0.2 eV)和染料再生(ΔG>0.15 eV)效率提高。此外,这些染料表现出较大的斯托克斯位移(231.64 - 177.62 nm)和优异的非线性光学(NLO)性质。这些发现表明,新设计的染料是DSSC应用中极具潜力的候选材料,具有增强的光捕获能力和改善的光电性能。