Suppr超能文献

将人工标注与深度迁移学习及放射组学相结合用于椎体骨折分析。

Integrating manual annotation with deep transfer learning and radiomics for vertebral fracture analysis.

作者信息

Wang Jing, Dong Zhirui, He Huanxin, Gao Zhiyang, Huang Yukai, Yuan Guangcheng, Jiang Libo, Zhao Mingdong

机构信息

Department of Orthopaedic Surgery, Jinshan Hospital, Fudan University, Shanghai, China.

Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.

出版信息

BMC Med Imaging. 2025 Feb 6;25(1):41. doi: 10.1186/s12880-025-01573-9.

Abstract

BACKGROUND

Vertebral compression fractures (VCFs) are prevalent in the elderly, often caused by osteoporosis or trauma. Differentiating acute from chronic VCFs is vital for treatment planning, but MRI, the gold standard, is inaccessible for some. However, CT, a more accessible alternative, lacks precision. This study aimed to enhance CT's diagnostic accuracy for VCFs using deep transfer learning (DTL) and radiomics.

METHODS

We retrospectively analyzed 218 VCF patients scanned with CT and MRI within 3 days from Oct 2022 to Feb 2024. MRI categorized VCFs. 3D regions of interest (ROIs) from CT scans underwent feature extraction and DTL modeling. Receiver operating characteristic (ROC) analysis evaluated models, with the best fused with radiomic features via LASSO. AUCs compared via Delong test, and clinical utility assessed by decision curve analysis (DCA).

RESULTS

Patients were split into training (175) and test (43) sets. Traditional radiomics with LR yielded AUCs of 0.973 (training) and 0.869 (test). Optimal DTL modeling improved to 0.992 (training) and 0.941 (test). Feature fusion further boosted AUCs to 1.000 (training) and 0.964 (test). DCA validated its clinical significance.

CONCLUSION

The feature fusion model enhances the differential diagnosis of acute and chronic VCFs, outperforming single-model approaches and offering a valuable decision-support tool for patients unable to undergo spinal MRI.

摘要

背景

椎体压缩骨折(VCF)在老年人中很常见,通常由骨质疏松症或创伤引起。区分急性与慢性VCF对于治疗方案的制定至关重要,但作为金标准的MRI对一些人来说无法进行。然而,更容易获得的CT替代方案缺乏精确性。本研究旨在使用深度迁移学习(DTL)和放射组学提高CT对VCF的诊断准确性。

方法

我们回顾性分析了2022年10月至2024年2月期间在3天内接受CT和MRI扫描的218例VCF患者。MRI对VCF进行分类。对CT扫描的三维感兴趣区域(ROI)进行特征提取和DTL建模。通过受试者操作特征(ROC)分析评估模型,其中最佳模型通过LASSO与放射组学特征融合。通过德龙检验比较AUC,并通过决策曲线分析(DCA)评估临床实用性。

结果

患者被分为训练组(175例)和测试组(43例)。传统放射组学与逻辑回归(LR)得出的训练组AUC为0.973,测试组为0.869。最佳DTL建模将其提高到训练组0.992,测试组0.941。特征融合进一步将AUC提高到训练组1.000,测试组0.964。DCA验证了其临床意义。

结论

特征融合模型增强了急性和慢性VCF的鉴别诊断,优于单模型方法,并为无法进行脊柱MRI检查的患者提供了有价值的决策支持工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b6b/11800457/ca7cd2aec953/12880_2025_1573_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验