一种用于高频多模式机器人运动的非电动气动混合振荡器。
A non-electrical pneumatic hybrid oscillator for high-frequency multimodal robotic locomotion.
作者信息
Chen Genliang, Long Yongzhou, Yao Siyue, Tang Shujie, Luo Junjie, Wang Hao, Zhang Zhuang, Jiang Hanqing
机构信息
State Key Laboratory of Mechanical Systems and Vibration, Shanghai Jiao Tong University, Shanghai, China.
Shanghai Key Laboratory of Digital Manufacturing for Thin-Walled Structures, Shanghai Jiao Tong University, Shanghai, China.
出版信息
Nat Commun. 2025 Feb 7;16(1):1449. doi: 10.1038/s41467-025-56704-1.
Pneumatic oscillators, incorporating soft non-electrical logic gates, offer an efficient means of actuating robots to perform tasks in extreme environments. However, the current design paradigms for these devices typically feature uniform structures with low rigidity, which restricts their oscillation frequency and limits their functions. Here, we present a pneumatic hybrid oscillator that integrates a snap-through buckling beam, fabric chambers, and a switch valve into its hybrid architecture. This design creates a stiffness gradient through a soft-elastic-rigid coupling mechanism, which substantially boosts the oscillator's frequency and broadens its versatility in robotic applications. Leveraging the characteristic capabilities of the oscillator, three distinct robots are developed, including a bionic jumping robot with high motion speed, a crawling robot with a pre-programmed logic gait, and a swimming robot with adjustable motion patterns. This work provides an effective design paradigm in robotics, enabling autonomous and efficient execution of complex, high-performance tasks, without relying on electronic control systems.
集成软非电逻辑门的气动振荡器提供了一种在极端环境中驱动机器人执行任务的有效方法。然而,这些设备当前的设计范式通常具有结构均匀且刚性较低的特点,这限制了它们的振荡频率并制约了其功能。在此,我们展示了一种气动混合振荡器,它在其混合架构中集成了一个快速屈曲梁、织物腔室和一个切换阀。这种设计通过软-弹性-刚性耦合机制产生刚度梯度,这大幅提高了振荡器的频率,并拓宽了其在机器人应用中的多功能性。利用该振荡器的独特能力,开发了三种不同的机器人,包括具有高运动速度的仿生跳跃机器人、具有预编程逻辑步态的爬行机器人以及具有可调节运动模式的游泳机器人。这项工作为机器人技术提供了一种有效的设计范式,能够在不依赖电子控制系统的情况下自主且高效地执行复杂的高性能任务。
相似文献
Sci Robot. 2021-2-17
Bioinspir Biomim. 2025-3-20
Soft Robot. 2024-10
Soft Robot. 2017-6-21
Front Robot AI. 2021-8-26
本文引用的文献
Sci Robot. 2024-1-31
Adv Sci (Weinh). 2024-3
Sci Adv. 2023-9-22
Science. 2023-9-15
Proc Natl Acad Sci U S A. 2022-10-4