Di Domenico Dario, Forsiuk Inna, Müller-Cleve Simon, Tanzarella Simone, Garro Florencia, Marinelli Andrea, Canepa Michele, Laffranchi Matteo, Chiappalone Michela, Bartolozzi Chiara, De Michieli Lorenzo, Boccardo Nicolò, Semprini Marianna
Rehab Technologies Lab, Italian Institute of Technology, Via Morego, 30, 16163, Genova, GE, Italy.
Department of Electronics and Telecommunications, Politecnico di Torino, Turin, 10124, Italy.
Sci Data. 2025 Feb 7;12(1):233. doi: 10.1038/s41597-025-04552-5.
Upper-limb movement characterization is crucial for many applications, from research on motor control, to the extraction of relevant features for driving active prostheses. While this is usually performed using electrophysiological and/or kinematic measurements only, the collection of tactile data during grasping movements could enrich the overall information about interaction with external environment. We provide a dataset collected from 10 healthy volunteers performing 16 tasks, including simple movements (i.e., hand opening/closing, wrist pronation/supination and flexion/extension, tridigital grasping, thumb abduction, cylindrical and spherical grasping) and more complex ones (i.e., reaching and grasping). The novelty consists in the inclusion of several types of recordings, namely electromyographic -both with bipolar and high-density configuration, kinematic-both with motion capture system and a sensorized glove, and tactile. The data is organized following the Brain Imaging Data Structure standard format and have been validated to ensure its reliability. It can be used to investigate upper-limb movements in physiological conditions, and to test sensor fusion approaches and control algorithms for prosthetics and robotic applications.
上肢运动特征描述对于许多应用都至关重要,从运动控制研究到驱动主动假肢相关特征的提取。虽然这通常仅使用电生理和/或运动学测量来执行,但在抓握运动期间收集触觉数据可以丰富有关与外部环境相互作用的整体信息。我们提供了一个数据集,该数据集由10名健康志愿者执行16项任务收集而成,包括简单运动(即手的张开/闭合、手腕的旋前/旋后和屈伸、三指抓握、拇指外展、圆柱状和球状抓握)以及更复杂的运动(即伸手抓握)。其新颖之处在于包含了几种类型的记录,即肌电图——包括双极和高密度配置、运动学——包括运动捕捉系统和传感手套,以及触觉记录。数据按照脑成像数据结构标准格式进行组织,并经过验证以确保其可靠性。它可用于研究生理条件下的上肢运动,并测试用于假肢和机器人应用的传感器融合方法和控制算法。