Canonero Enzo, Cowan Glen
Physics Department: Royal Holloway, University of London, Egham, UK.
Eur Phys J C Part Fields. 2025;85(2):156. doi: 10.1140/epjc/s10052-025-13884-w. Epub 2025 Feb 7.
The Gamma Variance Model is a statistical model that incorporates uncertainties in the assignment of systematic errors (informally called ). The model is of particular use in analyses that combine the results of several measurements. In the past, combinations have been carried out using two alternative approaches: the Best Linear Unbiased Estimator (BLUE) method or what we will call the nuisance-parameter method. In this paper, we obtain a general relation between the BLUE and nuisance-parameter methods when the correlations induced by systematic uncertainties are non-trivial (i.e., not or 0), and we then generalise the nuisance-parameter approach to include . We then present analytical formulas for estimating central values, confidence intervals, and goodness-of-fit when are incorporated into the statistical model. To illustrate the properties of the Gamma Variance Model, we apply it to the 7-8 TeV ATLAS-CMS top quark mass combination. We also explore a hypothetical scenario by artificially adding a fictitious measurement as an outlier to the combination, illustrating a key feature of the Gamma Variance Model - its sensitivity to the internal consistency of the input data - which could become relevant for future combinations.
伽马方差模型是一种统计模型,它纳入了系统误差(非正式地称为 )分配中的不确定性。该模型在合并多个测量结果的分析中特别有用。过去,合并是使用两种替代方法进行的:最佳线性无偏估计器(BLUE)方法或我们将称之为干扰参数方法。在本文中,当系统不确定性引起的相关性不平凡(即不为 或 0)时,我们获得了 BLUE 方法与干扰参数方法之间的一般关系,然后我们将干扰参数方法推广到包括 。然后,当 将 纳入统计模型时,我们给出了估计中心值、置信区间和拟合优度的解析公式。为了说明伽马方差模型的性质,我们将其应用于 7 - 8 TeV 的 ATLAS - CMS 顶夸克质量组合。我们还通过人为地向组合中添加一个虚构测量作为异常值来探索一种假设情景,说明了伽马方差模型的一个关键特征——它对输入数据内部一致性的敏感性——这可能与未来的组合相关。