Nowicka Zuzanna, Rentzeperis Frederika, Tagal Vural, Teer Jamie K, Ilter Didem, Beck Richard J, Cole Jackson P, Forero Pinto Ana, Tejero Joanne D, Scanu Elisa, Veith Thomas, Dominguez-Viqueira William, Maksin Konstantin, Carrillo-Perez Francisco, Gevaert Olivier, Xu Xiaonan, Karreth Florian A, Abdalah Mahmoud A, Fiandaca Giada, Pasetto Stefano, Prabhakaran Sandhya, Schultz Andrew, Ojwang' Awino Maureiq E, Barnholtz-Sloan Jill S, Farinhas Joaquim M, Gomes Ana P, Katira Parag, Andor Noemi
Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland.
Icahn School of Medicine at Mount Sinai, New York City, New York.
Cancer Res. 2025 Apr 15;85(8):1544-1559. doi: 10.1158/0008-5472.CAN-24-0401.
Glioblastoma (GBM) is the most aggressive form of primary brain tumor. The infiltrative nature of GBM makes complete surgical resection impossible. The selective forces that govern gliomagenesis are strong, shaping the composition of tumor cells during the initial progression to malignancy with late consequences for invasiveness and therapy response. Here, we developed a mathematical model that incorporates ploidy level and the nature of the brain tissue microenvironment to simulate the growth and invasion of GBM and used the model to make inferences about GBM initiation and response to the standard-of-care treatment. The spatial distribution of resource access in the brain was approximated through integration of in silico modeling, multiomics data, and image analysis of primary and recurrent GBM. The in silico results suggested that high-ploidy cells transition faster from oxidative phosphorylation to glycolysis than low-ploidy cells because they are more sensitive to hypoxia. Between surgeries, simulated tumors with different ploidy compositions progressed at different rates; however, whether higher ploidy predicted fast recurrence was a function of the brain microenvironment. Historical data supported the dependence on available resources in the brain, as shown by a significant correlation between the median oxygen levels in human tissues and the median ploidy of cancers that arise in the respective tissues. Taken together, these findings suggest that the availability of metabolic substrates in the brain drives different cell fate decisions for cells with different ploidy, thereby modulating both gliomagenesis and GBM recurrence. Significance: Ploidy viewed in the context of the resources in the microenvironment has the potential to inform whether modulation of energetic availability can delay tumor progression and could help guide clinical decision making.
胶质母细胞瘤(GBM)是原发性脑肿瘤中最具侵袭性的形式。GBM的浸润性使得完全手术切除无法实现。在胶质瘤发生过程中起作用的选择力很强,在肿瘤细胞向恶性肿瘤初始进展过程中塑造了肿瘤细胞的组成,对侵袭性和治疗反应产生后期影响。在此,我们开发了一个数学模型,该模型纳入了倍性水平和脑组织微环境的性质,以模拟GBM的生长和侵袭,并使用该模型对GBM的起始和对标准治疗的反应进行推断。通过整合计算机模拟建模、多组学数据以及原发性和复发性GBM的图像分析,近似得出大脑中资源获取的空间分布。计算机模拟结果表明,高倍体细胞比低倍体细胞从氧化磷酸化向糖酵解的转变更快,因为它们对缺氧更敏感。在两次手术之间,具有不同倍性组成的模拟肿瘤以不同的速率进展;然而,更高的倍性是否预示着快速复发取决于脑微环境。历史数据支持了对大脑中可用资源的依赖性,如人体组织中的中位氧水平与相应组织中发生的癌症的中位倍性之间存在显著相关性所示。综上所述,这些发现表明大脑中代谢底物的可用性驱动了具有不同倍性的细胞做出不同的细胞命运决定,从而调节胶质瘤发生和GBM复发。意义:在微环境资源背景下看待倍性,有可能为能量可用性的调节是否能延缓肿瘤进展提供信息,并有助于指导临床决策。