Cassens Jacob, Oliva Chávez Adela S, Tufts Danielle M, Zhong Jianmin, Faulk Christopher, Oliver Jonathan D
Division of Environmental Health Sciences, School of Public Health University of Minnesota Minneapolis Minnesota USA.
Department of Entomology University of Wisconsin - Madison Madison Wisconsin USA.
Ecol Evol. 2025 Feb 11;15(2):e70987. doi: 10.1002/ece3.70987. eCollection 2025 Feb.
Ticks and tick-borne pathogens represent the greatest vector-borne disease threat in the United States. Blacklegged ticks are responsible for most human cases, yet the disease burden is unevenly distributed across the northern and southern United States. Understanding the genetic characteristics influencing phenotypic differences in tick vectors is critical to elucidating disparities in tick-borne pathogen transmission dynamics. Applying evolutionary analyses to molecular variation in natural tick populations across ecological gradients will help identify signatures of local adaptation, which will improve control and mitigation strategies. In this study, we performed whole genome nanopore sequencing of individual ( = 1) blacklegged ticks across their geographical range (Minnesota, Pennsylvania, and Texas) to evaluate genetic divergence among populations. Our integrated analyses identified genetic variants associated with numerous biological processes and molecular functions that segregated across populations. Notably, northern populations displayed genetic variants in genes linked to xenobiotic detoxification, transmembrane transport, and sulfation that may underpin key phenotypes influencing tick dispersal, host associations, and vectorial capacity. Nanopore sequencing further allowed the recovery of complete mitochondrial and commensal endosymbiont genomes. Our study provides further evidence of genetic divergence in epidemiologically relevant gene families among blacklegged tick clades. This report emphasizes the need to elucidate the genetic basis driving divergence among conspecific blacklegged tick clades in the United States.
蜱虫及其传播的病原体是美国最大的媒介传播疾病威胁。莱姆病蜱虫导致了大多数人类感染病例,然而疾病负担在美国北部和南部的分布并不均匀。了解影响蜱虫媒介表型差异的遗传特征对于阐明蜱传病原体传播动态的差异至关重要。将进化分析应用于跨越生态梯度的天然蜱虫种群的分子变异,将有助于识别局部适应的特征,这将改进控制和缓解策略。在本研究中,我们对来自其地理分布范围(明尼苏达州、宾夕法尼亚州和得克萨斯州)的单个(=1)莱姆病蜱虫进行了全基因组纳米孔测序,以评估种群间的遗传差异。我们的综合分析确定了与许多生物过程和分子功能相关的遗传变异,这些变异在不同种群间存在差异。值得注意的是,北方种群在与异源生物解毒、跨膜运输和硫酸化相关的基因中显示出遗传变异,这些变异可能是影响蜱虫扩散、宿主关联和传播能力的关键表型的基础。纳米孔测序还进一步实现了完整线粒体和共生内共生体基因组的恢复。我们的研究提供了进一步的证据,证明莱姆病蜱虫分支中与流行病学相关的基因家族存在遗传差异。本报告强调了阐明驱动美国同种莱姆病蜱虫分支间差异的遗传基础的必要性。