El Bourachdi Soukaina, El Amri Abdelhay, Ayub Ali Raza, Moussaoui Fatima, Rakcho Yassine, El Ouadrhiri Faiçal, Adachi Abderrazzak, Lechheb Mahdi, Herrera-Melián José Alberto, Lahkimi Amal
Laboratory of Engineering, Electrochemistry, Modelling and Environment, Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
Laboratory of Advanced Materials and Process Engineering (LAMPE), Faculty of Sciences, Ibn Tofaïl University, B.P. 133, 14000 Kenitra, Morocco.
Int J Biol Macromol. 2025 May;305(Pt 1):141030. doi: 10.1016/j.ijbiomac.2025.141030. Epub 2025 Feb 13.
Methyl Orange, a toxic and persistent azo dye, poses significant environmental challenges in aquatic ecosystems. This study investigates the efficiency of a novel Chitosan@EDTA@Cellulose composite, synthesized by linking shrimp-derived chitosan and cactus-derived cellulose using EDTA as a linking agent. Comprehensive characterization techniques, including Fourier-transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, and Brunauer-Emmett-Teller surface area analysis, were employed. Under optimal conditions (pH 5, 50 mg/L dye concentration, 55 min, 0.1 g adsorbent), the composite achieved a maximum adsorption capacity of 55.87 mg/g, significantly outperforming chitosan (7.29 mg/g) and cellulose (5.69 mg/g). Adsorption followed the pseudo-second-order kinetic model and the Langmuir isotherm model, with thermodynamic analysis confirming a spontaneous and endothermic process. Competitive adsorption tests demonstrated >90 % removal efficiency despite the presence of interfering ions, attributed to the chelating properties of EDTA and the synergistic effect of the composite structure. Reusability tests showed a slight efficiency decline from 97.8 % to 81.86 % after four cycles. Box-Behnken Design optimization identified adsorbent mass, pH, and dye concentration as key factors in removal efficiency. Density Functional Theory analysis clarified the functional group interactions driving adsorption. These findings underscore the composite's potential as an effective and eco-friendly adsorbent for Methyl Orange removal.
甲基橙是一种有毒且持久的偶氮染料,在水生生态系统中带来了重大的环境挑战。本研究调查了一种新型壳聚糖@乙二胺四乙酸@纤维素复合材料的效率,该复合材料是通过使用乙二胺四乙酸作为连接剂将虾源壳聚糖和仙人掌源纤维素连接而成。采用了综合表征技术,包括傅里叶变换红外光谱、扫描电子显微镜、X射线衍射和布鲁诺尔-埃米特-泰勒表面积分析。在最佳条件下(pH值5、染料浓度50mg/L、55分钟、吸附剂0.1g),该复合材料实现了最大吸附容量55.87mg/g,显著优于壳聚糖(7.29mg/g)和纤维素(5.69mg/g)。吸附遵循准二级动力学模型和朗缪尔等温线模型,热力学分析证实这是一个自发的吸热过程。竞争性吸附试验表明,尽管存在干扰离子,但去除效率仍>90%,这归因于乙二胺四乙酸的螯合特性和复合材料结构的协同效应。可重复使用性试验表明,四个循环后效率从97.8%略有下降至81.86%。Box-Behnken设计优化确定吸附剂质量、pH值和染料浓度是去除效率的关键因素。密度泛函理论分析阐明了驱动吸附的官能团相互作用。这些发现突出了该复合材料作为一种有效且环保的吸附剂用于去除甲基橙的潜力。