Suppr超能文献

将膜流动性研究与药物包封预测模型相结合,以应对脂质体注射剂生产中的工业挑战。

Bridging membrane fluidity studies with a predictive model of drug encapsulation to address industrial challenges of liposomal injectables manufacturing.

作者信息

Biscaia-Caleiras Mariana, Fonseca Nuno, Lourenço Ana Sofia, Nunes António, Ferreira Abel, Moreira João Nuno, Simões Sérgio

机构信息

CNC-UC, Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Polo 1), University of Coimbra, Rua Larga, Coimbra, 3004-504, Portugal.

Bluepharma - Indústria Farmacêutica, S.A, São Martinho do Bispo, Coimbra, 3045-016, Portugal.

出版信息

Drug Deliv Transl Res. 2025 Feb 15. doi: 10.1007/s13346-025-01807-x.

Abstract

Industrial manufacturing of liposomal drugs, often involves high-temperature processes, resulting in increased energy consumption, prolonged process times, and elevated costs, while posing risks of phospholipid and drug degradation. The current study addresses these challenges by exploring remote loading of doxorubicin into liposomes, at temperatures below the phase transition temperature (PTT) of the primary phospholipid (DSPC, 55 °C). Drug loading efficiencies exceeding 90% at 45 °C were achieved, while efficiencies dropped significantly (6-fold and 23-fold) at 37 °C and 25 °C, respectively. This prompted the hypothesis that efficient drug loading might be attained below the PTT, when a minimal threshold for liposomal membrane fluidity is overcome. Using design of experiments (DoE), key factors influencing fluidity were identified: temperature, cholesterol content and surface tension (dependent on the isotonic agent). A full factorial DoE confirmed that membrane fluidity increased with lower surface tension, and high cholesterol content. A predictive model was also generated establishing a correlation between drug loading efficiency, membrane fluidity, and drug partitioning coefficient (logP). This model revealed that doxorubicin (logP = 1.5) requires a fluidity threshold of 4.41 for efficient loading (≥ 90%), whereas daunorubicin (logP = 2.32) needs a lower threshold of 3.85, suggesting that drugs with higher logP values demand lower fluidity thresholds for effective loading. The model's applicability was validated across various lipid formulations, enabling effective drug loading at temperatures as low as 25 °C, potentially reducing degradation risks and energy costs. Overall, these findings highlight the relevance of liposomal membrane fluidity studies as a potential tool for enabling more effective industrial processes.

摘要

脂质体药物的工业生产通常涉及高温过程,这会导致能源消耗增加、工艺时间延长和成本上升,同时还存在磷脂和药物降解的风险。当前的研究通过在低于主要磷脂(二硬脂酰磷脂酰胆碱,DSPC,55°C)的相变温度(PTT)的温度下探索阿霉素远程载入脂质体来应对这些挑战。在45°C时实现了超过90%的药物载入效率,而在37°C和25°C时效率分别显著下降(6倍和23倍)。这促使人们提出这样的假设,即当克服脂质体膜流动性的最小阈值时,在PTT以下可能实现高效的药物载入。通过实验设计(DoE),确定了影响流动性的关键因素:温度、胆固醇含量和表面张力(取决于等渗剂)。一个全因子DoE证实,膜流动性随着表面张力降低和胆固醇含量升高而增加。还生成了一个预测模型,建立了药物载入效率、膜流动性和药物分配系数(logP)之间的相关性。该模型表明,阿霉素(logP = 1.5)高效载入(≥90%)需要4.41的流动性阈值,而柔红霉素(logP = 2.32)需要3.85的较低阈值,这表明logP值较高的药物有效载入需要较低的流动性阈值。该模型的适用性在各种脂质制剂中得到了验证,能够在低至25°C的温度下实现有效的药物载入, potentially reducing degradation risks and energy costs. Overall, these findings highlight the relevance of liposomal membrane fluidity studies as a potential tool for enabling more effective industrial processes.

总体而言,这些发现突出了脂质体膜流动性研究作为实现更有效工业过程的潜在工具的相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验