Meier Rudolf, Srivathsan Amrita, Oliveira Sarah Siqueira, Balbi Maria Isabel P A, Ang Yuchen, Yeo Darren, Kjærandsen Jostein, Amorim Dalton de Souza
Center for Integrative Biodiversity Discovery, Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde, Invalidenstrasse 43, 10115, Berlin, Germany.
Institute for Biology, Humboldt University, Philippstraße 13, 10115, Berlin, Germany.
Cladistics. 2025 Apr;41(2):223-238. doi: 10.1111/cla.12609. Epub 2025 Feb 16.
We are entering the sixth mass extinction with little data for "dark taxa", although they comprise most species. Much of the neglect is due to the fact that conventional taxonomic methods struggle with handling thousands of specimens belonging to hundreds of species. We thus here propose a new strategy that we call "dark taxonomy". It addresses (i) taxonomic impediments, (ii) the lack of biodiversity baselines and (iii) the low impact of revisionary research. Taxonomic impediments are reduced by carrying out revisions at small geographic scales to keep the number of specimens low. The risk of taxonomic error is reduced by delimiting species based on two types of data. We furthermore show that dark taxonomy can yield important biodiversity baseline data by using samples obtained with biomonitoring traps. Lastly, we argue that the impact of revisionary research can be improved by publishing two papers addressing different readerships. The principles of dark taxonomy are illustrated by our taxonomic treatment of Singapore's fungus gnats (Mycetophilidae) based only on Malaise trap samples. We show that a first batch of specimens (N = 1454) contains 120 species, of which 115 are new to science, thus reducing taxonomic impediments by increasing the number of described Oriental species by 25%. Species delimitation started with using DNA barcodes to estimate the number of Molecular Operational Taxonomic Units (MOTUs) before "LIT" (Large-scale Integrative Taxonomy) was used to obtain the species boundaries for the 120 species by integrating morphological and molecular data. To test the taxonomic completeness of the revision, we next analysed a second batch of 1493 specimens and found that >97% belonged to the 120 species delimited based on the first batch. Indeed, the second batch only contained 18 new and rare MOTUs, i.e. our study suggests that a single revision can simultaneously yield the names for all important species and relevant biodiversity baseline data. Overall, we believe that "dark taxonomy" can quickly ready a large unknown taxon for biomonitoring.
我们正在进入第六次物种大灭绝时期,但对于“隐性类群”的数据却知之甚少,尽管它们包含了大多数物种。这种忽视很大程度上是因为传统分类方法难以处理属于数百个物种的数千个标本。因此,我们在此提出一种新策略,我们称之为“隐性分类学”。它解决了以下三个问题:(i)分类学障碍;(ii)生物多样性基线的缺乏;(iii)修订研究的低影响力。通过在小地理尺度上进行修订以保持标本数量较低,从而减少分类学障碍。基于两种类型的数据来界定物种,降低了分类错误的风险。此外,我们表明隐性分类学可以通过使用生物监测诱捕器获得的样本产生重要的生物多样性基线数据。最后,我们认为通过发表两篇针对不同读者群体的论文,可以提高修订研究的影响力。我们仅基于马氏网诱捕样本对新加坡蕈蚋(菌蚊科)进行分类处理,以此阐述隐性分类学的原则。我们发现第一批标本(N = 1454)包含120个物种,其中115个是科学上新发现的,从而使描述的东洋界物种数量增加了25%,减少了分类学障碍。在使用“大规模综合分类学(LIT)”整合形态学和分子数据以获得这120个物种的物种界限之前,先利用DNA条形码估计分子操作分类单元(MOTUs)的数量来进行物种界定。为了检验修订的分类学完整性,我们接下来分析了第二批1493个标本,发现超过97%属于基于第一批标本界定的120个物种。实际上,第二批标本仅包含18个新的和稀有的MOTUs,也就是说,我们的研究表明一次修订可以同时为所有重要物种命名并提供相关的生物多样性基线数据。总体而言,我们相信“隐性分类学”能够迅速为生物监测准备好一个大量未知的分类单元。