病例交叉研究设计与时间序列研究设计在极端高温暴露研究中的效率比较
Efficiency of case-crossover versus time-series study designs for extreme heat exposures.
作者信息
Schimke Caleb, Garcia Erika, Silva Sam J, Eckel Sandrah P
机构信息
Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California.
Department of Earth Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California.
出版信息
Environ Epidemiol. 2025 Feb 13;9(2):e370. doi: 10.1097/EE9.0000000000000370. eCollection 2025 Apr.
BACKGROUND
Time-stratified case-crossover (CC) and Poisson time series (TS) are two popular methods for relating acute health outcomes to time-varying ubiquitous environmental exposures. Our aim is to compare the performance of these methods in estimating associations with rare, extreme heat exposures and mortality-an increasingly relevant exposure in our changing climate.
METHODS
Daily mortality data were simulated in various scenarios similar to observed Los Angeles County data from 2014 to 2019 (N = 367,712 deaths). We treated observed temperature as either a continuous or dichotomized variable and controlled for day of week and a smooth function of time. Five temperature dichotomization cutoffs between the 80th and 99th percentile were chosen to investigate the effects of extreme heat events. In each of 10,000 simulations, the CC and several TS models with varying degrees of freedom for time were fit to the data. We reported bias, variance, and relative efficiency (ratio of variance for a "reference" TS method to variance of another method) of temperature association estimates.
RESULTS
CC estimates had larger uncertainty than TS methods, with the relative efficiency of CC ranging from 91% under the 80th percentile cutoff to 80% under the 99th percentile cutoff. As previously reported, methods best capturing data-generating time trends generally had the least bias. Additionally, TS estimates for observed Los Angeles data were larger with less uncertainty.
CONCLUSIONS
We provided new evidence that, compared with TS, CC has increasingly poor efficiency for rarer exposures in ecological study settings with shared, regional exposures, regardless of underlying time trends. Analysts should consider these results when applying either TS or CC methods.
背景
时间分层病例交叉设计(CC)和泊松时间序列(TS)是将急性健康结果与随时间变化的普遍环境暴露联系起来的两种常用方法。我们的目的是比较这些方法在估计与罕见的极端高温暴露和死亡率之间的关联时的性能,在不断变化的气候中,这种暴露越来越相关。
方法
在各种类似于2014年至2019年洛杉矶县观测数据的情景中模拟每日死亡率数据(N = 367,712例死亡)。我们将观测到的温度视为连续变量或二分变量,并控制星期几和时间的平滑函数。选择第80百分位数和第99百分位数之间的五个温度二分法临界值来研究极端高温事件的影响。在10,000次模拟中的每一次中,将CC和几个具有不同时间自由度的TS模型拟合到数据中。我们报告了温度关联估计的偏差、方差和相对效率(“参考”TS方法的方差与另一种方法的方差之比)。
结果
CC估计的不确定性比TS方法大,CC的相对效率范围从第80百分位数临界值下的91%到第99百分位数临界值下的80%。如先前报道,最能捕捉数据生成时间趋势的方法通常偏差最小。此外,洛杉矶观测数据的TS估计值更大,不确定性更小。
结论
我们提供了新的证据表明,与TS相比,在具有共享区域暴露的生态研究环境中,对于更罕见的暴露,CC的效率越来越低,无论潜在的时间趋势如何。分析师在应用TS或CC方法时应考虑这些结果。
相似文献
Environ Epidemiol. 2025-2-13
Cochrane Database Syst Rev. 2022-2-1
Res Rep Health Eff Inst. 2014-6
JAMA Intern Med. 2025-4-1
Res Rep Health Eff Inst. 2012-10
本文引用的文献
Health Data Sci. 2021-10-7
Am J Respir Crit Care Med. 2022-11-1
Environ Res. 2021-8
BMJ Open. 2020-12-13
BMC Med Res Methodol. 2019-3-6