Suppr超能文献

硬骨鱼中的Toll样受体信号传导

Toll-like receptor signaling in teleosts.

作者信息

Su Jianguo

机构信息

Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.

Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China.

出版信息

Sci China Life Sci. 2025 Feb 14. doi: 10.1007/s11427-024-2822-5.

Abstract

Toll-like receptors (TLRs) sit at the top of the immune system pyramid. They form a paramount family of immune sentinels capable of sensing diverse microbe-associated molecular patterns (MAPMs), danger/damage-associated molecular patterns (DAMPs), and other signals. These perceptions trigger immediate innate immunity and instruct subsequent adaptive immunity. TLRs are highly glycosylated type I transmembrane glycoproteins that share a conserved tripartite domain architecture (LRR, TM and TIR domains), classified into six subfamilies (TLR1, TLR3, TLR4, TLR5, TLR7, TLR11) in vertebrates. Upon ligand engagement, TLRs form homodimers or heterodimers to activate immune responses via SMOCs, orchestrated by intrinsic and pathogen-directed negative regulators, glycosylation modification, etc. TLR signaling culminates in the production of inflammatory cytokines, interferons, inflammasomes, immune cell activation, apoptosis, etc. Teleosts, as the largest and most diverse group among the extant vertebrates, manifest important economic value and are crucial for understanding the evolution of vertebrate immunity. To date, teleosts contain 20 TLRs (TLR1-5, TLR7-9, TLR13, TLR14, TLR18-23, TLR25-28) with expansions and losses in different species, and most of them possess more or less variants. Almost all teleostean TLRs localize in organelles, such as endosomes and lysosomes, sensing not only pathogens and DAMPs but also trophic factors and environmental stresses (hypoxia, temperature, microplastics, etc.). Most ligands for TLRs remain undetermined in teleosts. The adaptors consist of MyD88, TIRAP, TRIF, SARM1, BCAP and SCIMP, but without TRAM; however, half of the corresponding relationships between TLRs and adaptors remain unknown in teleosts. Neofunctionalization often emerges during evolution in teleostean TLRs. Here, a systematic review of TLR signaling in teleosts, from the perspective of comparative immunology, presents the current understanding of the functions and mechanisms of teleosts. Additionally, it provides strong evidence of a divergent TLR signaling repertoire with the species-specific variation among teleosts. These are expected to benefit novel adjuvants, aquaculture, fish immunology, and comparative immunology.

摘要

Toll样受体(TLRs)位于免疫系统金字塔的顶端。它们构成了一个至关重要的免疫哨兵家族,能够感知多种微生物相关分子模式(MAPMs)、危险/损伤相关分子模式(DAMPs)以及其他信号。这些感知触发即时的固有免疫,并指导后续的适应性免疫。TLRs是高度糖基化的I型跨膜糖蛋白,具有保守的三方结构域架构(LRR、TM和TIR结构域),在脊椎动物中分为六个亚家族(TLR1、TLR3、TLR4、TLR5、TLR7、TLR11)。在配体结合后,TLRs形成同型二聚体或异型二聚体,通过SMOCs激活免疫反应,由内在的和病原体导向的负调节因子、糖基化修饰等精心调控。TLR信号传导最终导致炎性细胞因子、干扰素、炎性小体的产生、免疫细胞激活、细胞凋亡等。硬骨鱼是现存脊椎动物中最大且最多样化的群体,具有重要的经济价值,对于理解脊椎动物免疫的进化至关重要。迄今为止,硬骨鱼含有20种TLRs(TLR1 - 5、TLR7 - 9、TLR13、TLR14、TLR18 - 23、TLR25 - 28),在不同物种中存在扩增和缺失,并且其中大多数或多或少存在变体。几乎所有硬骨鱼TLRs都定位于细胞器,如内体和溶酶体,不仅能感知病原体和DAMPs,还能感知营养因子和环境应激(缺氧、温度、微塑料等)。硬骨鱼中TLRs的大多数配体仍未确定。衔接子由MyD88、TIRAP、TRIF、SARM1、BCAP和SCIMP组成,但没有TRAM;然而,硬骨鱼中TLRs与衔接子之间一半的对应关系仍不清楚。新功能化在硬骨鱼TLRs的进化过程中经常出现。在此,从比较免疫学的角度对硬骨鱼中的TLR信号传导进行系统综述,展示了目前对硬骨鱼功能和机制的理解。此外,它提供了有力证据,证明硬骨鱼中存在具有物种特异性差异的不同TLR信号传导库。这些有望有益于新型佐剂、水产养殖、鱼类免疫学和比较免疫学。

相似文献

1
Toll-like receptor signaling in teleosts.
Sci China Life Sci. 2025 Feb 14. doi: 10.1007/s11427-024-2822-5.
3
Structural basis for TIR domain-mediated innate immune signaling by Toll-like receptor adaptors TRIF and TRAM.
Proc Natl Acad Sci U S A. 2025 Jan 14;122(2):e2418988122. doi: 10.1073/pnas.2418988122. Epub 2025 Jan 9.
4
RNA Viruses, Toll-Like Receptors, and Cytokines: The Perfect Storm?
J Innate Immun. 2025;17(1):126-153. doi: 10.1159/000543608. Epub 2025 Jan 16.
6
T-bet expressing Tr1 cells driven by dietary signals dominate the small intestinal immune landscape.
bioRxiv. 2025 Jul 4:2025.06.30.662190. doi: 10.1101/2025.06.30.662190.
8
Application potential of toll-like receptors in cancer immunotherapy: Systematic review.
Medicine (Baltimore). 2016 Jun;95(25):e3951. doi: 10.1097/MD.0000000000003951.
9
Toll-9 elicits antiviral immunity against Drosophila C virus.
J Virol. 2025 May 14:e0221424. doi: 10.1128/jvi.02214-24.
10
Use of CRISPR/CAS9 Technologies to Study the Role of TLR in Dendritic Cell Subsets.
Methods Mol Biol. 2023;2700:77-92. doi: 10.1007/978-1-0716-3366-3_4.

引用本文的文献

1

本文引用的文献

3
GG triggers intestinal epithelium injury in zebrafish revealing host dependent beneficial effects.
Imeta. 2024 Mar 25;3(2):e181. doi: 10.1002/imt2.181. eCollection 2024 Apr.
4
Both IRAK3 and IRAK1 Activate the MyD88-TRAF6 Pathway in Zebrafish.
J Immunol. 2024 Aug 1;213(3):362-372. doi: 10.4049/jimmunol.2400054.
5
From periphery to center stage: 50 years of advancements in innate immunity.
Cell. 2024 Apr 25;187(9):2030-2051. doi: 10.1016/j.cell.2024.03.036.
7
Hazards of microplastics exposure to liver function in fishes: A systematic review and meta-analysis.
Mar Environ Res. 2024 Apr;196:106423. doi: 10.1016/j.marenvres.2024.106423. Epub 2024 Feb 27.
9
TLR7 neo-functionalizes to sense dsRNA and trigger antiviral and antibacterial immunity in non-tetrapod vertebrates.
iScience. 2023 Oct 24;26(12):108315. doi: 10.1016/j.isci.2023.108315. eCollection 2023 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验