Su Jianguo
Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China.
Sci China Life Sci. 2025 Feb 14. doi: 10.1007/s11427-024-2822-5.
Toll-like receptors (TLRs) sit at the top of the immune system pyramid. They form a paramount family of immune sentinels capable of sensing diverse microbe-associated molecular patterns (MAPMs), danger/damage-associated molecular patterns (DAMPs), and other signals. These perceptions trigger immediate innate immunity and instruct subsequent adaptive immunity. TLRs are highly glycosylated type I transmembrane glycoproteins that share a conserved tripartite domain architecture (LRR, TM and TIR domains), classified into six subfamilies (TLR1, TLR3, TLR4, TLR5, TLR7, TLR11) in vertebrates. Upon ligand engagement, TLRs form homodimers or heterodimers to activate immune responses via SMOCs, orchestrated by intrinsic and pathogen-directed negative regulators, glycosylation modification, etc. TLR signaling culminates in the production of inflammatory cytokines, interferons, inflammasomes, immune cell activation, apoptosis, etc. Teleosts, as the largest and most diverse group among the extant vertebrates, manifest important economic value and are crucial for understanding the evolution of vertebrate immunity. To date, teleosts contain 20 TLRs (TLR1-5, TLR7-9, TLR13, TLR14, TLR18-23, TLR25-28) with expansions and losses in different species, and most of them possess more or less variants. Almost all teleostean TLRs localize in organelles, such as endosomes and lysosomes, sensing not only pathogens and DAMPs but also trophic factors and environmental stresses (hypoxia, temperature, microplastics, etc.). Most ligands for TLRs remain undetermined in teleosts. The adaptors consist of MyD88, TIRAP, TRIF, SARM1, BCAP and SCIMP, but without TRAM; however, half of the corresponding relationships between TLRs and adaptors remain unknown in teleosts. Neofunctionalization often emerges during evolution in teleostean TLRs. Here, a systematic review of TLR signaling in teleosts, from the perspective of comparative immunology, presents the current understanding of the functions and mechanisms of teleosts. Additionally, it provides strong evidence of a divergent TLR signaling repertoire with the species-specific variation among teleosts. These are expected to benefit novel adjuvants, aquaculture, fish immunology, and comparative immunology.
Toll样受体(TLRs)位于免疫系统金字塔的顶端。它们构成了一个至关重要的免疫哨兵家族,能够感知多种微生物相关分子模式(MAPMs)、危险/损伤相关分子模式(DAMPs)以及其他信号。这些感知触发即时的固有免疫,并指导后续的适应性免疫。TLRs是高度糖基化的I型跨膜糖蛋白,具有保守的三方结构域架构(LRR、TM和TIR结构域),在脊椎动物中分为六个亚家族(TLR1、TLR3、TLR4、TLR5、TLR7、TLR11)。在配体结合后,TLRs形成同型二聚体或异型二聚体,通过SMOCs激活免疫反应,由内在的和病原体导向的负调节因子、糖基化修饰等精心调控。TLR信号传导最终导致炎性细胞因子、干扰素、炎性小体的产生、免疫细胞激活、细胞凋亡等。硬骨鱼是现存脊椎动物中最大且最多样化的群体,具有重要的经济价值,对于理解脊椎动物免疫的进化至关重要。迄今为止,硬骨鱼含有20种TLRs(TLR1 - 5、TLR7 - 9、TLR13、TLR14、TLR18 - 23、TLR25 - 28),在不同物种中存在扩增和缺失,并且其中大多数或多或少存在变体。几乎所有硬骨鱼TLRs都定位于细胞器,如内体和溶酶体,不仅能感知病原体和DAMPs,还能感知营养因子和环境应激(缺氧、温度、微塑料等)。硬骨鱼中TLRs的大多数配体仍未确定。衔接子由MyD88、TIRAP、TRIF、SARM1、BCAP和SCIMP组成,但没有TRAM;然而,硬骨鱼中TLRs与衔接子之间一半的对应关系仍不清楚。新功能化在硬骨鱼TLRs的进化过程中经常出现。在此,从比较免疫学的角度对硬骨鱼中的TLR信号传导进行系统综述,展示了目前对硬骨鱼功能和机制的理解。此外,它提供了有力证据,证明硬骨鱼中存在具有物种特异性差异的不同TLR信号传导库。这些有望有益于新型佐剂、水产养殖、鱼类免疫学和比较免疫学。