使用机器学习预测弗吉尼亚州东南部非裔美国人的心理健康差异。
Predicting mental health disparities using machine learning for African Americans in Southeastern Virginia.
作者信息
Moudden Ismail El, Bittner Michael C, Karpov Matvey V, Osunmakinde Isaac O, Acheamponmaa Akosua, Nevels Breshell J, Mbaye Mamadou T, Fields Tonya L, Jordan Karthiga, Bahoura Messaoud
机构信息
Eastern Virginia Medical School (EVMS), Norfolk State University, Norfolk, VA, USA.
Computer Science Department, Norfolk State University, Norfolk, VA, USA.
出版信息
Sci Rep. 2025 Feb 18;15(1):5900. doi: 10.1038/s41598-025-89579-9.
This study examined mental health disparities among African Americans using AI and machine learning for outcome prediction. Analyzing data from African American adults (18-85) in Southeastern Virginia (2016-2020), we found Mood Affective Disorders were most prevalent (41.66%), followed by Schizophrenia Spectrum and Other Psychotic Disorders. Females predominantly experienced mood disorders, with patient ages typically ranging from late thirties to mid-forties. Medicare coverage was notably high among schizophrenia patients, while emergency admissions and comorbidities significantly impacted total healthcare charges. Machine learning models, including gradient boosting, random forest, neural networks, logistic regression, and Naive Bayes, were validated through 100 repeated 5-fold cross-validations. Gradient boosting demonstrated superior predictive performance among all models. Nomograms were developed to visualize risk factors, with gender, age, comorbidities, and insurance type emerging as key predictors. The study revealed higher mental health disorder prevalence compared to national averages, suggesting a potentially greater mental health burden in this population. Despite the limitations of its retrospective design and regional focus, this research provides valuable insights into mental health disparities among African Americans in Southeastern Virginia, particularly regarding demographic and clinical risk factors.
本研究使用人工智能和机器学习进行结果预测,以检验非裔美国人之间的心理健康差异。通过分析弗吉尼亚州东南部非裔美国成年人(18 - 85岁)(2016 - 2020年)的数据,我们发现情绪情感障碍最为普遍(41.66%),其次是精神分裂症谱系及其他精神病性障碍。女性主要经历情绪障碍,患者年龄通常在三十多岁晚期到四十多岁中期。医疗保险在精神分裂症患者中的覆盖比例显著较高,而急诊入院和合并症对总医疗费用有显著影响。包括梯度提升、随机森林、神经网络、逻辑回归和朴素贝叶斯在内的机器学习模型通过100次重复的5折交叉验证进行了验证。梯度提升在所有模型中表现出卓越的预测性能。制定了列线图以直观显示风险因素,其中性别、年龄、合并症和保险类型成为关键预测因素。该研究显示,与全国平均水平相比,心理健康障碍患病率更高,表明该人群可能承受着更大的心理健康负担。尽管本研究存在回顾性设计和区域局限性,但它为弗吉尼亚州东南部非裔美国人的心理健康差异,特别是在人口统计学和临床风险因素方面,提供了有价值的见解。