Lott Patrick, Maurer Florian, Beck Arik
Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology KIT, Engesserstr. 18/20, 76131, Karlsruhe, Germany.
Angew Chem Int Ed Engl. 2025 May 12;64(20):e202424718. doi: 10.1002/anie.202424718. Epub 2025 Apr 7.
While the outstanding stability of per- and polyfluoroalkyl substances (PFAS) paved the way for their widespread application in a huge variety of applications, it also resulted in their nickname "forever chemicals". The rising awareness for PFAS-related environmental and health concerns drives a discussion on the most effective ways to abate PFAS emissions into the environment, i.e. water, soil, and air, and remediation of contaminated matter. In order to address the knowledge gap regarding air pollution by PFAS, this minireview summarizes the current corpus of work in the field and outlines how catalysis can contribute to PFAS abatement in the gas phase. Beyond a mere collection of state-of-the-art knowledge, overarching challenges in catalytic PFAS removal are identified, spanning from fundamental organic and inorganic chemistry, i.e. C-F-bond activation, to heterogeneous catalysis, i.e. surface reactions at the gas-solid interface, to reaction engineering, i.e. scaling relations and technical hurdles. In addition, the article introduces concepts and workflows that aim at providing guidance during the design of technological solutions for the efficient control of gaseous PFAS emissions.
全氟和多氟烷基物质(PFAS)卓越的稳定性为其在众多应用中的广泛使用铺平了道路,但这也导致它们有了“永久化学物质”这一昵称。人们对与PFAS相关的环境和健康问题的关注度不断提高,引发了关于减少PFAS向环境(即水、土壤和空气)排放以及修复受污染物质的最有效方法的讨论。为了填补PFAS空气污染方面的知识空白,本综述总结了该领域目前的研究成果,并概述了催化如何有助于在气相中减少PFAS。除了单纯收集最新知识外,还确定了催化去除PFAS的总体挑战,从基础有机和无机化学(即碳氟键活化)到多相催化(即气固界面的表面反应),再到反应工程(即比例关系和技术障碍)。此外,本文还介绍了一些概念和工作流程,旨在为高效控制气态PFAS排放的技术解决方案设计提供指导。