Wan Pei, Zhu Wen-Zheng, Lou Yan-Chao, Cheng Zi-Mo, Ren Zhi-Cheng, Zhang Han, Wang Xi-Lin, Wang Hui-Tian
National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China.
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
Phys Rev Lett. 2025 Feb 7;134(5):053801. doi: 10.1103/PhysRevLett.134.053801.
Cavity-enhanced spontaneous parametric down-conversion (SPDC) provides a significant way to produce ∼10 MHz narrow-band photon pairs, which matches the bandwidth of photon for quantum memory. However, the output photon pairs from the cavity are not entangled, and postselection is required to create the entanglement so far, so the direct output of cavity-enhanced narrow-band entangled photon pairs is still an open challenge. Here, we propose a solution that realizes the first postselection-free cavity-enhanced narrow-band entangled photon pairs. The entanglement is achieved in degree of freedom of orbital angular momentum (OAM) by an OAM-conservation SPDC process in an actively and precisely controlled cavity supporting degenerate high-order OAM modes. The measured linewidth and fidelity are 13.8 MHz and 0.969(3), respectively, for the directly generated OAM entangled two photons. We deterministically transfer the OAM entanglement to polarization one with almost no loss and obtain polarization entangled two photons with a fidelity of 0.948(2). Moreover, we produce narrow-band OAM-polarization hyperentangled photon pairs with a fidelity of 0.850(2), which is realized by interfering the two photons on a polarizing beam splitter (PBS) and postselecting the events of one and only one photon on each PBS port. Novel cavity may find applications in cavity-based light-matter interaction. Our results provide an efficient and promising approach to create narrow-band entangled photon sources for memory-based long-distance quantum communication and network.
腔增强自发参量下转换(SPDC)为产生频率约为10MHz的窄带光子对提供了一条重要途径,该频率与量子存储器的光子带宽相匹配。然而,来自腔的输出光子对并不纠缠,到目前为止需要进行后选择来产生纠缠,因此直接输出腔增强窄带纠缠光子对仍然是一个悬而未决的挑战。在此,我们提出一种解决方案,实现了首个无需后选择的腔增强窄带纠缠光子对。通过在一个主动且精确控制的支持简并高阶轨道角动量(OAM)模式的腔内进行OAM守恒SPDC过程,在OAM自由度上实现了纠缠。对于直接产生的OAM纠缠双光子,测得的线宽和保真度分别为13.8MHz和0.969(3)。我们将OAM纠缠几乎无损地确定性转移到偏振纠缠上,得到保真度为0.948(2)的偏振纠缠双光子。此外,我们产生了保真度为0.850(2)的窄带OAM - 偏振超纠缠光子对,这是通过在偏振分束器(PBS)上干涉两个光子并对每个PBS端口上仅有一个光子的事件进行后选择来实现的。新型腔可能在基于腔的光与物质相互作用中找到应用。我们的结果为创建用于基于存储器的长距离量子通信和网络的窄带纠缠光子源提供了一种高效且有前景的方法。