Suppr超能文献

超越两两互动的三角结构影响着世界贸易网络的稳健性。

The triangular structure beyond pairwise interactions affects the robustness of the world trade networks.

作者信息

Wang Wan, Ren Zhuoming, Lin Yu, Weng Tongfeng, Du Wenli

机构信息

Alibaba Business School, Hangzhou Normal University, Hangzhou 311121, China.

Modelling Engineering Risk and Complexity, Scuola Superiore Meridionale, Naples 80138, Italy.

出版信息

Chaos. 2025 Feb 1;35(2). doi: 10.1063/5.0245093.

Abstract

Unlike hollow triangles formed through pairwise interactions, a filled triangle or two-simplex comprises three nodes that form a group and represent the most fundamental higher-order interaction. To analyze the effects of higher-order triangles on the robustness of world trade networks, we integrate multilateral regional trade agreements and import-export world trade data to construct two-simplex higher-order trade networks. The topological characteristics indicate a significant growth in the scale and complexity of trade networks over time, with a notable decline in 2020. Then, we introduce node attack strategies designed to simulate scenarios where the key countries or regions withdraw from the trade network. It is revealed that network robustness has improved along with size and complexity, although it diminished in 2020. To further explore the factors influencing the changes in network robustness, we generate higher-order synthetic trade networks based on the random simplicial complex (RSC) model and the scale-free simplicial complex (SFSC) model. The synthetic trade networks demonstrate that increasing the average degree enhances robustness, while merely increasing the number of nodes or filled triangles can weaken it. Additionally, scale-free higher-order networks exhibit lower robustness due to vulnerability of the hub nodes, in contrast to the higher resilience of random simplicial complexes. These insights emphasize the importance of fostering multilateral interactions and strengthening ties for network robustness.

摘要

与通过两两相互作用形成的空心三角形不同,实心三角形或二维单形由三个形成一组的节点组成,代表最基本的高阶相互作用。为了分析高阶三角形对世界贸易网络鲁棒性的影响,我们整合多边区域贸易协定和进出口世界贸易数据,构建二维单形高阶贸易网络。拓扑特征表明,贸易网络的规模和复杂性随时间显著增长,在2020年有明显下降。然后,我们引入节点攻击策略,以模拟关键国家或地区退出贸易网络的情景。结果表明,网络鲁棒性随规模和复杂性的增加而提高,尽管在2020年有所下降。为了进一步探究影响网络鲁棒性变化的因素,我们基于随机单纯复形(RSC)模型和无标度单纯复形(SFSC)模型生成高阶合成贸易网络。合成贸易网络表明,增加平均度可增强鲁棒性,而仅增加节点数量或实心三角形数量则会削弱鲁棒性。此外,由于中心节点的脆弱性,无标度高阶网络的鲁棒性较低,而随机单纯复形具有更高的弹性。这些见解强调了促进多边互动和加强联系对网络鲁棒性的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验