Suppr超能文献

利用全基因组关联研究(GWAS)衍生标记改进菠菜维生素C含量的基因组预测

Improving genomic prediction of vitamin C content in spinach using GWAS-derived markers.

作者信息

Rameneni Jana Jeevan, Islam A S M Faridul, Avila Carlos A, Shi Ainong

机构信息

Texas A&M AgriLife Research and Extension Center, 2415 Highway 83, Weslaco, TX, 78596, USA.

Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA.

出版信息

BMC Genomics. 2025 Feb 21;26(1):171. doi: 10.1186/s12864-025-11343-0.

Abstract

Vitamin C (VC), also known as ascorbic acid and ascorbate, is a water-soluble antioxidant in plants that promotes skin health and immune function in humans. Spinach (Spinacia oleracea L.) is a leafy green widely consumed for its health benefits. Recent reports have shown that nutritional content, including VC, can be improved in spinach. However, due to its complex inheritance, new selection methods are needed to improve selection for cultivar development. In this study, single nucleotide polymorphism (SNP) markers identified by genome-wide association (GWAS) were used for genomic prediction (GP) to improve prediction accuracy (PA) for VC content in spinach. A set of 147,977 SNPs generated from whole genome resequencing was used for GWAS in a panel of 347 spinach genotypes by six GWAS models. Sixty-two SNP markers distributed on all six spinach chromosomes were associated with VC content. PA for the selection of VC content was estimated with fourteen random SNP sets across seven GP models. The results indicated that the PA can be > 40% after using 1,000 or more SNPs in six of the seven models tested; using GWAS-derived significant SNP markers PA increases to a high r-value up to 0.7 when using 62 associated SNP markers in Bayes ridge regression (BRR) model. Upon validation, identified accessions with high VC and high PA genomic selection model can be used in spinach breeding programs to develop high VC content cultivars.

摘要

维生素C(VC),也被称为抗坏血酸和抗坏血酸盐,是植物中的一种水溶性抗氧化剂,可促进人类的皮肤健康和免疫功能。菠菜(Spinacia oleracea L.)是一种因有益健康而被广泛食用的绿叶蔬菜。最近的报道表明,包括VC在内的营养成分在菠菜中可以得到改善。然而,由于其复杂的遗传特性,需要新的选择方法来改进品种培育的选择。在本研究中,通过全基因组关联分析(GWAS)鉴定的单核苷酸多态性(SNP)标记被用于基因组预测(GP),以提高菠菜中VC含量的预测准确性(PA)。通过六个GWAS模型,将一组从全基因组重测序产生的147,977个SNP用于347个菠菜基因型群体的GWAS分析。分布在菠菜所有六条染色体上的62个SNP标记与VC含量相关。通过七个GP模型中的十四个随机SNP集估计了选择VC含量的PA。结果表明,在测试的七个模型中的六个模型中使用1000个或更多SNP后,PA可以大于40%;当在贝叶斯岭回归(BRR)模型中使用62个相关SNP标记时,使用GWAS衍生的显著SNP标记,PA增加到高达0.7的高r值。经过验证,具有高VC和高PA基因组选择模型的已鉴定种质可用于菠菜育种计划,以培育高VC含量的品种。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a059/11844115/11f9f2aee7bc/12864_2025_11343_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验