Suppr超能文献

用于早期检测胰腺癌的生物标志物、组学和人工智能。

Biomarkers, omics and artificial intelligence for early detection of pancreatic cancer.

作者信息

Murray Kate, Oldfield Lucy, Stefanova Irena, Gentiluomo Manuel, Aretini Paolo, O'Sullivan Rachel, Greenhalf William, Paiella Salvatore, Aoki Mateus N, Pastore Aldo, Birch-Ford James, Rao Bhavana Hemantha, Uysal-Onganer Pinar, Walsh Caoimhe M, Hanna George B, Narang Jagriti, Sharma Pradakshina, Campa Daniele, Rizzato Cosmeri, Turtoi Andrei, Sever Elif Arik, Felici Alessio, Sucularli Ceren, Peduzzi Giulia, Öz Elif, Sezerman Osman Uğur, Van der Meer Robert, Thompson Nathan, Costello Eithne

机构信息

Liverpool Experimental Cancer Medicine Centre, University of Liverpool, Liverpool, United Kingdom.

Department of Biology, University of Pisa, Italy.

出版信息

Semin Cancer Biol. 2025 Jun;111:76-88. doi: 10.1016/j.semcancer.2025.02.009. Epub 2025 Feb 20.

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is frequently diagnosed in its late stages when treatment options are limited. Unlike other common cancers, there are no population-wide screening programmes for PDAC. Thus, early disease detection, although urgently needed, remains elusive. Individuals in certain high-risk groups are, however, offered screening or surveillance. Here we explore advances in understanding high-risk groups for PDAC and efforts to implement biomarker-driven detection of PDAC in these groups. We review current approaches to early detection biomarker development and the use of artificial intelligence as applied to electronic health records (EHRs) and social media. Finally, we address the cost-effectiveness of applying biomarker strategies for early detection of PDAC.

摘要

胰腺导管腺癌(PDAC)常在治疗选择有限的晚期被诊断出来。与其他常见癌症不同,目前尚无针对PDAC的全人群筛查项目。因此,尽管迫切需要早期疾病检测,但仍难以实现。不过,某些高危人群可接受筛查或监测。在此,我们探讨了在了解PDAC高危人群方面取得的进展,以及在这些人群中实施基于生物标志物的PDAC检测所做的努力。我们回顾了目前早期检测生物标志物开发的方法,以及人工智能在电子健康记录(EHR)和社交媒体中的应用。最后,我们讨论了应用生物标志物策略早期检测PDAC的成本效益。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验