Behzad Kian, Zandi Rojin, Motamedi Elaheh, Salehinejad Hojjat, Siami Milad
Department of Electrical & Computer Engineering, Northeastern University, Boston, MA, USA.
Kern Center for the Science of Health Care Delivery and Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN, USA.
Sci Data. 2025 Feb 22;12(1):326. doi: 10.1038/s41597-025-04636-2.
We introduce a novel dataset for multi-robot activity recognition (MRAR) using two robotic arms integrating WiFi channel state information (CSI), video, and audio data. This multimodal dataset utilizes signals of opportunity, leveraging existing WiFi infrastructure to provide detailed indoor environmental sensing without additional sensor deployment. Data were collected using two Franka Emika robotic arms, complemented by three cameras, three WiFi sniffers to collect CSI, and three microphones capturing distinct yet complementary audio data streams. The combination of CSI, visual, and auditory data can enhance robustness and accuracy in MRAR. This comprehensive dataset enables a holistic understanding of robotic environments, facilitating advanced autonomous operations that mimic human-like perception and interaction. By repurposing ubiquitous WiFi signals for environmental sensing, this dataset offers significant potential aiming to advance robotic perception and autonomous systems. It provides a valuable resource for developing sophisticated decision-making and adaptive capabilities in dynamic environments.
我们引入了一个用于多机器人活动识别(MRAR)的新型数据集,该数据集使用两个集成了WiFi信道状态信息(CSI)、视频和音频数据的机器人手臂。这个多模态数据集利用机会信号,借助现有的WiFi基础设施,无需额外部署传感器就能提供详细的室内环境感知。数据是使用两个Franka Emika机器人手臂收集的,辅以三个摄像头、三个用于收集CSI的WiFi嗅探器以及三个捕获不同但互补音频数据流的麦克风。CSI、视觉和听觉数据的结合可以提高MRAR的鲁棒性和准确性。这个全面的数据集能够全面了解机器人环境,促进模仿人类感知和交互的高级自主操作。通过将无处不在的WiFi信号重新用于环境感知,该数据集具有推进机器人感知和自主系统的巨大潜力。它为在动态环境中开发复杂的决策和自适应能力提供了宝贵资源。