Majidi Sanaz, Aghaiypour Kolyani Khosrow, Akrami Meisam, Dadar Maryam
Department of Microbiology & Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
Biotechnology Department, Behesht Aein Laboratory Complex (MABA), No 193 Jala Al Ahmad Avenue, Tehran, Iran.
Mol Biotechnol. 2025 Feb 22. doi: 10.1007/s12033-025-01409-5.
Since December 2019, the SARS-CoV-2 virus has caused the global COVID-19 pandemic. Antiviral and anti-inflammatory treatments have had limited success, positioning vaccine development as a key strategy for public health. This study constructed a chimeric S1 protein fused to a human Fc domain using the Pichia pastoris expression system. Yeast expression system was selected for its low-cost and relatively easier process comparing mammalian and insect. In addition, two human commercial vaccines including human Hepatitis B virus and human papilloma virus are produced currently in yeast system. The chimeric protein named S1Fc was codon-optimized and expressed via the pPICZaA vector as pPICZaA-S1Fc construct. This construct consists of 918 amino acids: 673 amino acids of the S1 protein (N-terminal) linked to 227 amino acids from the human IgG1 Fc region (C-terminal) via 18 amino acids linker. Two yeast strains, a standard glycosylating strain and a mammalian-like GlycoSwitch strain, were selected for expression. SDS-PAGE and western blot analyses indicated successful S1Fc expression in both strains, with a molecular weight of approximately 130 kDa. The GlycoSwitch strain demonstrated enhanced antigenicity in ELISA, indicating a glycosylation pattern more similar to the native viral S1 protein. Purification was achieved using a protein G chromatography column, yielding 14.6 µg/ml in the GlycoSwitch strain and 18.9 µg/ml in the standard strain. These findings highlight the Pichia pastoris expression system as a cost-effective platform for S1Fc protein production, meriting further study as a potential vaccine antigen.
自2019年12月以来,严重急性呼吸综合征冠状病毒2(SARS-CoV-2)病毒引发了全球新型冠状病毒肺炎(COVID-19)大流行。抗病毒和抗炎治疗的成效有限,这使得疫苗研发成为公共卫生的关键策略。本研究利用毕赤酵母表达系统构建了一种与人Fc结构域融合的嵌合S1蛋白。选择酵母表达系统是因为相较于哺乳动物和昆虫表达系统,其成本低且过程相对简单。此外,目前有两种人用商业疫苗,即人乙型肝炎病毒疫苗和人乳头瘤病毒疫苗是在酵母系统中生产的。名为S1Fc的嵌合蛋白经过密码子优化,并通过pPICZaA载体作为pPICZaA-S1Fc构建体进行表达。该构建体由918个氨基酸组成:S1蛋白的673个氨基酸(N端)通过18个氨基酸的接头与来自人IgG1 Fc区域的227个氨基酸(C端)相连。选择了两种酵母菌株,一种是标准糖基化菌株,另一种是类哺乳动物糖基开关菌株进行表达。十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)和蛋白质免疫印迹分析表明,两种菌株中均成功表达了S1Fc,其分子量约为130 kDa。糖基开关菌株在酶联免疫吸附测定(ELISA)中表现出增强的抗原性,表明其糖基化模式与天然病毒S1蛋白更相似。使用蛋白G层析柱进行纯化,糖基开关菌株的产量为14.6 μg/ml,标准菌株的产量为18.9 μg/ml。这些发现突出了毕赤酵母表达系统作为生产S1Fc蛋白的经济高效平台,作为一种潜在的疫苗抗原值得进一步研究。