Long Junhao, Lu Jiayue, Chen Liheng, Qiu Xueqing, Liu Qiyu, Qin Yanlin
Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China.
ACS Omega. 2025 Feb 5;10(6):6210-6219. doi: 10.1021/acsomega.4c11260. eCollection 2025 Feb 18.
Lignin, a natural aromatic polymer, is a promising candidate for sustainable photonic materials. However, its heterogeneity hinders uniform nanoparticle production. This study employs membrane ultrafiltration to fractionate alkaline lignin into five molecular weight fractions (UL1-UL5) and synthesizes lignin nanoparticles (LNPs) via antisolvent self-assembly. Low-molecular-weight fractions yielded highly uniform, monodisperse LNPs (PDI < 0.1), while higher-molecular-weight fractions produced irregular particles. Notably, a strong correlation between lignin molecular weight and nanoparticle size was observed, with particle size decreasing as the molecular weight increased. Atomic force microscopy and density functional theory simulations provided insights into the intermolecular interactions of lignin fractions, showing that low-molecular-weight lignin exhibited stronger intermolecular forces, facilitating ordered self-assembly. These findings underscore the pivotal role of ultrafiltration in tailoring lignin properties and achieving precise control over nanoparticle formation. This study highlights the potential of ultrafiltration-based approaches for producing sustainable lignin-based photonic materials with customizable optical properties.
木质素是一种天然芳香族聚合物,是可持续光子材料的一个有前途的候选材料。然而,其异质性阻碍了均匀纳米颗粒的生产。本研究采用膜超滤将碱性木质素分离为五个分子量级分(UL1-UL5),并通过反溶剂自组装合成木质素纳米颗粒(LNP)。低分子量级分产生了高度均匀、单分散的LNP(PDI<0.1),而高分子量级分产生了不规则颗粒。值得注意的是,观察到木质素分子量与纳米颗粒尺寸之间存在很强的相关性,随着分子量的增加,颗粒尺寸减小。原子力显微镜和密度泛函理论模拟为木质素级分的分子间相互作用提供了见解,表明低分子量木质素表现出更强的分子间力,促进了有序自组装。这些发现强调了超滤在调整木质素性质和实现对纳米颗粒形成的精确控制方面的关键作用。本研究突出了基于超滤的方法在生产具有可定制光学性质的可持续木质素基光子材料方面的潜力。