Martín Ramírez Mariano E
YPF Tecnología S.A., Av. del Petróleo s/n, Berisso, Buenos Aires 1923, Argentina.
Instituto de Física de Líquidos y Sistemas Biológicos, CONICET, Av. 59 N789, La Plata, Buenos Aires 1900, Argentina.
ACS Omega. 2025 Feb 5;10(6):5699-5707. doi: 10.1021/acsomega.4c09018. eCollection 2025 Feb 18.
Underground carbon dioxide storage in confined systems becomes a viable alternative to diminish atmospheric concentrations of this gas. Shale reservoirs exhibit mineralogical and pore size heterogeneities that are not deeply analyzed to evaluate the transport and adsorption capacities of carbon dioxide inside their matrix. Functionalized carbon nanotubes and inorganic nanochannels composed of calcite or silicon dioxide are excellent approximations to model the poral throats of the organic and inorganic matrices of shale reservoirs, respectively. In this work, through an extensive molecular dynamics study, we assess the impact on adsorption and transport properties of carboxylic functionalization of the nanochannel surfaces and oxidized inorganic nanochannels, considering only silicon dioxide on pure carbon dioxide and water and carbon dioxide mixtures. We find that the presence of a relevant concentration of carboxylic groups and silicon dioxide on both types of nanochannels significantly reduces the axial velocity of carbon dioxide, owing mainly to their geometrical contributions. Regarding carbon dioxide and water mixtures at different molar fractions, simulations show that there is a relevant increase in water adsorption for both organic and inorganic nanochannels due to strong Coulombic interactions, which partially occlude the available space where carbon dioxide molecules could be adsorbed and displaced. In Figure 1a, we observe how the water molecules nucleate, self-owing to their own Coulombic interactions. On the other hand, in Figure 1b, we observe how this fluid interacts with SiO, owing to its chemical affinity with the hydrophilic surface. Additionally, based on our findings, the mineralogical composition, the O/C relationship of kerogen, and residual water saturation confined in the nanopores all play a relevant role in defining the storage capacity of carbon dioxide.
在受限系统中进行地下二氧化碳储存成为降低大气中该气体浓度的可行替代方案。页岩储层表现出矿物学和孔径的非均质性,但尚未深入分析这些特性以评估二氧化碳在其基质内部的传输和吸附能力。功能化碳纳米管以及由方解石或二氧化硅组成的无机纳米通道,分别是模拟页岩储层有机和无机基质孔隙喉道的极佳近似模型。在这项工作中,通过广泛的分子动力学研究,我们仅考虑二氧化硅对纯二氧化碳以及水和二氧化碳混合物的情况,评估纳米通道表面的羧基官能化和氧化无机纳米通道对吸附和传输特性的影响。我们发现,在两种类型的纳米通道上存在一定浓度的羧基和二氧化硅会显著降低二氧化碳的轴向速度,这主要归因于它们的几何结构作用。对于不同摩尔分数的二氧化碳和水混合物,模拟结果表明,由于强库仑相互作用,有机和无机纳米通道的水吸附量都有显著增加,这部分占据了二氧化碳分子可能被吸附和置换的可用空间。在图1a中,我们观察到水分子如何由于自身的库仑相互作用而聚集。另一方面,在图1b中,我们观察到这种流体如何因其与亲水性表面的化学亲和力而与二氧化硅相互作用。此外,基于我们的研究结果,矿物组成、干酪根的氧碳比以及纳米孔隙中受限的残余水饱和度在确定二氧化碳的储存能力方面都起着重要作用。