Suppr超能文献

用于软骨修复的3D打印生物增强混凝土

Biological Reinforced Concrete for Cartilage Repair With 3D Printing.

作者信息

Chen Yuewei, Fu Tao, Zou Zhongfei, Liu Yanming, Zhu Jianguo, Teng Binhong, Yao Ke, Li Haibin, Li Jiachun, Xie Zhijian, He Yong

机构信息

School of Mechanical Engineering, Guizhou University, Guiyang, 550025, China.

State Key Laboratory of Fluid Power and Mechatronic Systems & Liangzhu Laboratory, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.

出版信息

Adv Sci (Weinh). 2025 Apr;12(16):e2416734. doi: 10.1002/advs.202416734. Epub 2025 Feb 25.

Abstract

The development of biomimetic cartilage constructs (BCCs) with natural extracellular matrix (ECM) microenvironments and topological cues to accelerate the reconstruction of natural articular cartilage (NAC) after injury is challenging due to its complex structure, low cellular content, and less vascularity. Inspired by concrete rebar structure, a biomimetic cartilage named "biological reinforced concrete" is fabricated, with collagen fiber orientation transitioning from parallel to perpendicular, replicating the ECM microenvironments and complex construct of NAC. 3D-printed ultrafine fiber networks (UFNs) served as a degradable "biorebars", while a hybrid biohydrogel acted as "biocement". The stem cells are utilized as "bioactive aggregates". The biocement is developed by combining and screening various biohydrogels to mimic an ECM microenvironment conducive to the formation of NAC. By adjusting the fiber scale and spacing of the UFNs, the mechanical properties of the biomimetic cartilages are controlled to resemble those of NAC. Additionally, the UFNs guided the directed growth of cells and the orderly secretion of ECM. Subsequently, the developed BCCs are implanted into an osteochondral defect, and after 4 months, they successfully reconstructed the complex structure of cartilage with mechanical properties closely resembling those of NAC. The biological reinforced concrete offers a customizable and universal strategy for tissue regeneration.

摘要

开发具有天然细胞外基质(ECM)微环境和拓扑线索的仿生软骨构建体(BCC)以加速损伤后天然关节软骨(NAC)的重建具有挑战性,因为其结构复杂、细胞含量低且血管较少。受混凝土钢筋结构的启发,制备了一种名为“生物增强混凝土”的仿生软骨,其胶原纤维方向从平行转变为垂直,复制了NAC的ECM微环境和复杂结构。3D打印的超细纤维网络(UFN)充当可降解的“生物钢筋”,而混合生物水凝胶充当“生物水泥”。干细胞被用作“生物活性聚集体”。通过组合和筛选各种生物水凝胶来开发生物水泥,以模拟有利于NAC形成的ECM微环境。通过调整UFN的纤维尺度和间距,控制仿生软骨的力学性能使其类似于NAC。此外,UFN引导细胞定向生长和ECM的有序分泌。随后,将开发的BCC植入骨软骨缺损处,4个月后,它们成功重建了软骨的复杂结构,其力学性能与NAC非常相似。生物增强混凝土为组织再生提供了一种可定制的通用策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a19/12021066/dbf8738a2024/ADVS-12-2416734-g008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验