Haueisen Janine, Möller Mareike, Seybold Heike, Small Corinn, Wilkens Mira, Jahneke Lovis, Parchinger Leonhard, Thynne Elisha, Stukenbrock Eva H
Environmental Genomics Group, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany.
Christian-Albrechts University Kiel, 24118 Kiel, Germany.
Mol Plant Microbe Interact. 2025 Mar;38(2):235-251. doi: 10.1094/MPMI-10-24-0133-FI. Epub 2025 Apr 23.
Host-pathogen co-evolutionary dynamics drive constant changes in plant pathogens to thrive in their plant host. Factors that determine host specificity are diverse and range from molecular and morphological strategies to metabolic and reproductive adaptations. We applied an experimental approach and conducted comparative microscopy, transcriptome analyses, and functional analyses of selected pathogen traits to identify determinants of host specificity in an important wheat pathogen. We included three closely related fungal pathogens, , . , and . , that establish compatible and incompatible interactions with wheat. Although infections of the incompatible species induce plant defenses during invasion of stomatal openings, we found a conserved early-infection program among the three species whereby only 9.2% of the 8,885 orthologous genes are significantly differentially expressed during initial infection. The genes upregulated in likely reflect specialization to wheat, whereas upregulated genes in the incompatible interaction may reflect processes to counteract cellular stress associated with plant defenses. We selected nine candidate genes encoding putative effectors and host-specificity determinants in and deleted these to study their functional relevance. Despite the particular expression patterns of the nine genes, only two mutants were impaired in virulence. We further expressed the proteins in to investigate protein function and assess cell death reaction. Hereby, we identify three effectors with cell-death-inducing properties. From the functional analyses, we conclude that the successful infection of in wheat relies on an extensive redundancy of virulence determinants. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
宿主-病原体的共同进化动态驱动植物病原体不断变化,以便在其植物宿主中繁衍。决定宿主特异性的因素多种多样,从分子和形态学策略到代谢和生殖适应性。我们采用了一种实验方法,进行了比较显微镜观察、转录组分析以及对选定病原体特征的功能分析,以确定一种重要小麦病原体中宿主特异性的决定因素。我们纳入了三种密切相关的真菌病原体,即……,它们与小麦建立了亲和与不亲和的相互作用。尽管不亲和物种的感染在气孔侵入过程中会诱导植物防御反应,但我们发现这三种物种之间存在一个保守的早期感染程序,在初始感染期间,8885个直系同源基因中只有9.2%存在显著差异表达。在……中上调的基因可能反映了对小麦的适应性,而在不亲和相互作用中上调的基因可能反映了应对与植物防御相关的细胞应激的过程。我们在……中选择了九个编码假定效应子和宿主特异性决定因素的候选基因,并删除这些基因以研究它们的功能相关性。尽管这九个基因有特定的表达模式,但只有两个突变体的毒力受损。我们进一步在……中表达……蛋白,以研究蛋白功能并评估细胞死亡反应。据此,我们鉴定出三种具有诱导细胞死亡特性的效应子。从功能分析中,我们得出结论,……在小麦中的成功感染依赖于毒力决定因素的广泛冗余。[公式:见正文] 版权所有© 2025作者。本文是一篇根据知识共享署名-非商业性使用-禁止演绎4.0国际许可协议分发的开放获取文章。