Poizat Emma, Gérard Mahaut, Macaire Claire, De Azevedo Emeline, Denoix Jean-Marie, Coudry Virginie, Jacquet Sandrine, Bertoni Lélia, Tallaj Amélie, Audigié Fabrice, Hatrisse Chloé, Hébert Camille, Martin Pauline, Marin Frédéric, Hanne-Poujade Sandrine, Chateau Henry
Centre d'Imagerie et de Recherche sur les Affections Locomotrices Equines (CIRALE), Ecole Nationale vétérinaire d'Alfort, 94700 Maisons-Alfort, France.
LIM France, Labcom LIM-EnvA, 24300 Nontron, France.
Sensors (Basel). 2025 Feb 12;25(4):1095. doi: 10.3390/s25041095.
Lameness detection in horses is a critical challenge in equine veterinary practice, particularly when symptoms are mild. This study aimed to develop a predictive system using a support vector machine (SVM) to identify the affected limb in horses trotting in a straight line. The system analyzed data from inertial measurement units (IMUs) placed on the horse's head, withers, and pelvis, using variables such as vertical displacement and retraction angles. A total of 287 horses were included, with 256 showing single-limb lameness and 31 classified as sound. The model achieved an overall accuracy of 86%, with the highest success rates in identifying right and left forelimb lameness. However, there were challenges in identifying sound horses, with a 54.8% accuracy rate, and misclassification between forelimb and hindlimb lameness occurred in some cases. The study highlighted the importance of specific variables, such as vertical head and withers displacement, for accurate classification. Future research should focus on refining the model, exploring deep learning methods, and reducing the number of sensors required, with the goal of integrating these systems into equestrian equipment for early detection of locomotor issues.
马匹跛行检测是马兽医实践中的一项关键挑战,尤其是在症状轻微时。本研究旨在开发一种使用支持向量机(SVM)的预测系统,以识别直线小跑的马匹中受影响的肢体。该系统分析了放置在马的头部、肩部和骨盆上的惯性测量单元(IMU)的数据,使用了垂直位移和后缩角度等变量。总共纳入了287匹马,其中256匹表现为单肢跛行,31匹被归类为健康。该模型的总体准确率达到86%,在识别右前肢和左前肢跛行方面成功率最高。然而,在识别健康马匹方面存在挑战,准确率为54.8%,并且在某些情况下,前肢和后肢跛行之间会发生误分类。该研究强调了特定变量(如头部和肩部的垂直位移)对于准确分类的重要性。未来的研究应专注于改进模型、探索深度学习方法以及减少所需传感器的数量,目标是将这些系统集成到马术设备中,以便早期检测运动问题。