Liang Xintao, Li Xinling, Wang Qingyan, Qian Jiadong, Wang Yujing
School of Measurement-Control and Communication Engineering, Harbin University of Science and Technology, Harbin 150080, China.
Sensors (Basel). 2025 Feb 13;25(4):1158. doi: 10.3390/s25041158.
Change detection, as a popular research direction for dynamic monitoring of land cover change, usually uses hyperspectral remote-sensing images as data sources. Hyperspectral images have rich spatial-spectral information, but traditional change detection methods have limited ability to express the features of hyperspectral images, and it is difficult to identify the complex detailed features, semantic features, and spatial-temporal correlation features in two-phase hyperspectral images. Effectively using the abundant spatial and spectral information in hyperspectral images to complete change detection is a challenging task. This paper proposes a hyperspectral image change detection method based on the balanced metric, which uses the spatiotemporal attention module to translate bi-temporal hyperspectral images to the same eigenspace, uses the deep Siamese network structure to extract deep semantic features and shallow spatial features, and measures sample features according to the Euclidean distance. In the training phase, the model is optimized by minimizing the loss of distance maps and label maps. In the testing phase, the prediction map is generated by simple thresholding of distance maps. Experiments show that on the four datasets, the proposed method can achieve a good change detection effect.
变化检测作为土地覆盖变化动态监测的一个热门研究方向,通常将高光谱遥感影像作为数据源。高光谱影像具有丰富的空间光谱信息,但传统的变化检测方法表达高光谱影像特征的能力有限,难以识别两期高光谱影像中的复杂细节特征、语义特征和时空相关特征。有效利用高光谱影像中丰富的空间和光谱信息来完成变化检测是一项具有挑战性的任务。本文提出了一种基于平衡度量的高光谱影像变化检测方法,该方法利用时空注意力模块将两期高光谱影像映射到同一特征空间,采用深度孪生网络结构提取深度语义特征和浅层空间特征,并根据欧氏距离度量样本特征。在训练阶段,通过最小化距离图和标签图的损失来优化模型。在测试阶段,通过对距离图进行简单阈值处理生成预测图。实验表明,在四个数据集上,该方法都能取得良好的变化检测效果。