Ladóczki Bence, Gyevi-Nagy László, Nagy Péter R, Kállay Mihály
Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
HUN-REN-BME Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
J Chem Theory Comput. 2025 Mar 11;21(5):2432-2447. doi: 10.1021/acs.jctc.4c01777. Epub 2025 Feb 26.
Parallel algorithms to accelerate explicitly correlated second-order Mo̷ller-Plesset (MP2) and coupled-cluster singles and doubles with perturbative triples [CCSD(T)] calculations and benchmarks on extended molecular systems are reported. A hybrid Open Multi-Processing (OpenMP)/Message Passing Interface (MPI) parallel approach is used to distribute the computational load among processor cores and compute nodes. The intermediates at both the MP2 and the CCSD(T) levels are expressed in a density fitting formalism, using only three-index quantities to decrease the amount of data to be stored and communicated. To further reduce compute time, the frozen natural orbital, the natural auxiliary function, and the natural auxiliary basis schemes are implemented in a hybrid parallel manner. The combination of these three approximations and our recent size-consistent explicitly correlated triples correction with the new hybrid parallelization offers a unique accuracy-over-cost performance among explicitly correlated CC methods. Our comprehensive benchmarks demonstrate excellent parallel scaling of the cost-determining operations up to hundreds of processor cores. As demonstrated on the noncovalent interaction energy of the corannulene dimer, highly accurate explicitly correlated CCSD(T) calculations can be carried out for systems of 60 atoms and 2500 orbitals, which were beyond computational limits without local correlation approximations. This enables various applications, such as benchmarking of or, for certain size ranges, replacing local CCSD(T) or density functional methods as well as the further advancement of robust thermochemistry protocols designed for larger molecules of ca. 20-50 atoms.
报道了用于加速显式相关二阶莫勒-普列塞特(MP2)以及含微扰三重激发的耦合簇单双激发(CCSD(T))计算的并行算法,并给出了扩展分子体系的基准测试结果。采用混合式开放多处理(OpenMP)/消息传递接口(MPI)并行方法在处理器核心和计算节点之间分配计算负载。MP2和CCSD(T)水平的中间量采用密度拟合形式表示,仅使用三指标量以减少存储和通信的数据量。为进一步减少计算时间,冻结自然轨道、自然辅助函数和自然辅助基方案以混合并行方式实现。这三种近似方法与我们最近的尺寸一致显式相关三重激发校正以及新的混合并行化相结合,在显式相关耦合簇方法中提供了独特的精度-成本性能。我们全面的基准测试表明,成本决定操作在多达数百个处理器核心上具有出色的并行扩展性。如在碗烯二聚体的非共价相互作用能上所展示的,对于含60个原子和2500个轨道的体系,可以进行高精度的显式相关CCSD(T)计算,而在没有局部相关近似的情况下这些体系超出了计算极限。这使得能够进行各种应用,例如对某些尺寸范围的体系进行基准测试,或者替代局部CCSD(T)或密度泛函方法,以及进一步推进为大约20 - 50个原子的较大分子设计的稳健热化学协议。