Travasso Rui D M, Penick Clint A, Dunn Robert R, Poiré E Corvera
CFisUC, Department of Physics, University of Coimbra, Rua Larga, 3004-516, Coimbra, Portugal.
Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA.
Sci Rep. 2025 Feb 27;15(1):7017. doi: 10.1038/s41598-025-90928-x.
We develop a fluid mechanical model of the arterial tree in order to address the key question of what determines heart rate in mammals. We propose that the frequency of the pulsatile pressure gradient, which minimizes resistance to flow and facilitates fluid movement, coincides with the physiological heart rate. Using data from the literature on heart rate in 95 mammals as a function of body mass, and the radius of the aorta as a function of body mass, we construct a target curve of cardiac frequency versus aortic radius. This curve serves as a benchmark for comparison with our model's results. Our elastic one-dimensional model for pulsatile arterial flow, combined with experimental rheological data for human blood, enables us to calculate the frequency that minimizes flow resistance, which we express as a function of a characteristic vascular scale, in this case, the aorta radius. We find a reasonable agreement with the target curve, confirming a scaling law with the observed exponent for mammals ranging in size from ferrets to elephants. Our model provides a plausible explanation for the resting heart rate frequency in healthy mammals.
我们建立了一个动脉树的流体力学模型,以解决哺乳动物心率由什么决定这一关键问题。我们提出,脉动压力梯度的频率与生理心率一致,该频率可使流动阻力最小化并促进流体运动。利用文献中95种哺乳动物心率与体重的函数关系数据,以及主动脉半径与体重的函数关系数据,我们构建了心脏频率与主动脉半径的目标曲线。该曲线作为与我们模型结果进行比较的基准。我们的脉动动脉血流弹性一维模型,结合人体血液的实验流变学数据,使我们能够计算出使流动阻力最小化的频率,我们将其表示为特征血管尺度(在这种情况下为主动脉半径)的函数。我们发现与目标曲线有合理的一致性,证实了从雪貂到大象等不同大小哺乳动物的标度律及观察到的指数。我们的模型为健康哺乳动物的静息心率频率提供了一个合理的解释。