Suppr超能文献

瑞典一项针对最新病理学技术的自下而上启动的数字外部质量评估计划:减少病理科之间的差异。

A bottom-up initiated digital external quality assessment scheme for the state-of-the-art pathology in Sweden: reduced variability between pathology departments.

作者信息

Rask Gunilla, Olofsson Helena, Bauer Annette, Bodén Anna, van Brakel Johannes, Colón-Cervantes Eugenia, Ehinger Anna, Kovács Anikó, Rundgren-Sellei Åsa, Hartman Johan, Ågren Josefin, Darai-Ramqvist Eva, Andersson Charlotta, Gustafsson Christina Kåbjörn, Acs Balazs

机构信息

Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden.

Department of Diagnostics and Intervention, Surgery, Umeå University, Umeå, Sweden.

出版信息

Virchows Arch. 2025 Feb 28. doi: 10.1007/s00428-025-04059-9.

Abstract

External quality assessment (EQA) schemes for pathology are essential, yet large/international programmes do not assess morphology-based biomarkers or address local/regional needs. This study outlines bottom-up initiated, flexible Swedish Digital Pathology EQA rounds for breast pathology, and presents results from the 2021 and 2023 rounds. Six breast carcinoma cases were selected for each EQA round by the Swedish Breast Pathology Expert Group (KVAST Breast). Whole tissue slides stained with HE, IHC, and ISH were anonymized, digitized, and uploaded to the digital EQA platform. Biomarkers were selected based on national registry data analysis and pathologist and clinician feedback. The 2021 round assessed Nottingham grade (NHG), oestrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), while the 2023 round focused on NHG, HER2-low, and global Ki67. Twenty-seven pathology departments participated. From 2021 to 2023, the variability of NHG assessment on digital slides improved from moderate to substantial (kappa 0.50; 95% CI 0.45-0.55 to 0.64; 95% CI 0.60-0.68), with better agreement for NHG3 than NHG1. Participants showed substantial and excellent agreement in ER (kappa 1) and PR (0.75 (95% CI 0.69-0.82). We found similar agreement in distinguishing HER2 IHC 0 (0.78; 95% CI 0.72-0.82) and HER2 IHC 3 + (0.94; 95% CI 0.88-1.00) from other HER2 IHC scores. Participants showed substantial agreement in detecting Ki67 high and Ki67 low cases (kappa 0.65; 95% CI 0.60-0.71 and 0.69; 95% CI 0.64-0.74, respectively). This digital EQA identifies local issues and complements large international EQAs to address challenges in the rapidly changing biomarkers of cancer therapy.

摘要

病理学的外部质量评估(EQA)计划至关重要,但大型/国际项目并未评估基于形态学的生物标志物,也未满足地方/区域需求。本研究概述了自下而上启动的、灵活的瑞典乳腺病理学数字病理学EQA轮次,并展示了2021年和2023年轮次的结果。瑞典乳腺病理学专家组(KVAST Breast)为每个EQA轮次挑选了6例乳腺癌病例。用苏木精-伊红(HE)、免疫组织化学(IHC)和原位杂交(ISH)染色的全组织切片进行匿名化、数字化处理后上传至数字EQA平台。基于国家登记数据分析以及病理学家和临床医生的反馈选择生物标志物。2021年轮次评估了诺丁汉分级(NHG)、雌激素受体(ER)、孕激素受体(PR)和人表皮生长因子受体2(HER2),而2023年轮次聚焦于NHG、HER2低表达和总体Ki67。27个病理科参与其中。从2021年到2023年,数字切片上NHG评估的变异性从中度提高到了高度(kappa值分别为0.50;95%置信区间0.45 - 0.55至0.64;95%置信区间0.60 - 0.68),NHG3的一致性优于NHG1。参与者在ER(kappa值为1)和PR(0.75(95%置信区间0.69 - 0.82)方面表现出高度和极佳的一致性。我们发现在区分HER2 IHC 0(0.78;95%置信区间0.72 - 0.82)和HER2 IHC 3 +(0.94;95%置信区间0.88 - 1.00)与其他HER2 IHC评分方面具有相似的一致性。参与者在检测Ki67高表达和Ki67低表达病例方面表现出高度一致性(kappa值分别为0.65;95%置信区间0.60 - 0.71和0.69;95%置信区间0.64 - 0.74)。这种数字EQA能够识别局部问题,并补充大型国际EQA,以应对癌症治疗中快速变化的生物标志物所带来的挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验