Tang Liyi, Xu Yangsen, Tang Shuang, Yu Yu-Xiang, Meng Aiyun, Wang Xinzhong, Zhang Wei-De
School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, PR China.
Institute of Technology for Future Industry, Shenzhen Institute of Information Technology, Shenzhen 518172, PR China.
J Colloid Interface Sci. 2025 Jun 15;688:432-442. doi: 10.1016/j.jcis.2025.02.151. Epub 2025 Feb 21.
Photocatalytic hydrogen production utilizing solar energy provides a pivotal strategy for realizing a carbon-neutral society. Cocatalyst-modified semiconductor materials have emerged as promising candidates for photocatalytic applications due to their ability to facilitate the spatial separation and directional migration of photogenerated electron-hole pairs. Nevertheless, those systems often face challenges such as intricate preparation procedures and issues with non-compact recombination. Herein, we report a one-pot thermal treatment approach for synthesizing a composite of MnO nanoparticles and sodium poly(heptazine imides) (Na-PHI). MnO nanoparticles were in situ generated and embedded within the Na-PHI matrix during the sintering process. The resulted photocatalyst demonstrated significantly enhanced photoinduced charge separation efficiency, exhibiting approximately 6-fold and 3-fold improvements compared to pristine MnO and Na-PHI, respectively. The photocatalytic hydrogen evolution rate reached 14 μmol h, nearly 9 times that of Na-PHI (1.6 μmol h) in the aqueous solution of benzylamine (BA) under visible light illumination (780 nm ≥ λ ≥ 420 nm). Furthermore, the optimized MnO-Na-PHI sample (Mn-Na-PHI) displayed a remarkably high photocatalytic hydrogen generation rate alongside the synchronous photo-oxidative coupling of aliphatic and aromatic amine under visible light. This work underscores the potential for rational design and synthesis of novel Na-PHI-based functional composites for sustainable energy applications.
利用太阳能进行光催化产氢为实现碳中和社会提供了关键策略。助催化剂修饰的半导体材料因其能够促进光生电子 - 空穴对的空间分离和定向迁移,已成为光催化应用的有前景候选材料。然而,这些体系常常面临诸如制备过程复杂以及复合不紧密等问题。在此,我们报道了一种一锅法热处理方法来合成MnO纳米颗粒与聚(七嗪酰亚胺)钠(Na - PHI)的复合材料。在烧结过程中,MnO纳米颗粒原位生成并嵌入到Na - PHI基体中。所得光催化剂表现出显著提高的光致电荷分离效率,与原始MnO和Na - PHI相比,分别提高了约6倍和3倍。在可见光(780 nm≥λ≥420 nm)照射下,在苄胺(BA)水溶液中,光催化析氢速率达到14 μmol h,几乎是Na - PHI(1.6 μmol h)的9倍。此外,优化后的MnO - Na - PHI样品(Mn - Na - PHI)在可见光下不仅表现出极高的光催化产氢速率,还能实现脂肪族和芳香族胺的同步光氧化偶联。这项工作强调了合理设计和合成新型Na - PHI基功能复合材料用于可持续能源应用的潜力。