Jia Yanbing, Gu Huaguang, Wang Xianjun
School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471000, China.
School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China.
Chaos. 2025 Mar 1;35(3). doi: 10.1063/5.0232718.
Recent experimental observations on seizures showed that the optogenetic activation of inhibitory interneurons cannot suppress but enhance the frequency and synchronization of spiking of excitatory pyramidal neurons, i.e., synchronized post-inhibitory rebound (PIR) spiking. This complex phenomenon presents paradoxical functions of interneurons and novel etiologies of seizures. In the present study, nonlinear mechanisms and conditions of the synchronized PIR spiking are obtained in a network model of inhibitory interneurons and excitatory pyramidal neurons. Pyramidal neurons with low spiking frequency near the bifurcation, characterized by small conductances (gh) of the hyperpolarization-activated cation (Ih) current and small applied current, are easy to generate PIR spiking. Strong optogenetic stimulation activating interneurons with high spiking frequency and inhibitory synapses with large conductances contribute to the PIR spiking. Moreover, after the optogenetic stimulation, the excitatory synaptic current from pyramidal neurons to interneurons can induce spiking of interneurons to reduce the PIR spiking. Reducing the membrane potential of interneurons can enhance the range of excitatory synaptic conductances for PIR spiking. The PIR spiking can be interpreted by complex nonlinear interactions between the hyperpolarization activation of the Ih current and membrane potential modulated by gh and inhibitory stimulation. Furthermore, higher synchronization degrees of the PIR spiking appear for the spiking with lower frequency. During the inhibitory stimulation, pyramidal neurons become silence with a small difference in membrane potential, which remains within long intervals between spikes and results in strong synchronization after stimulation. The nonlinear mechanisms and conditions of the synchronized PIR spiking are helpful for recognizing and modulating seizures.
最近关于癫痫发作的实验观察表明,抑制性中间神经元的光遗传学激活并不能抑制,反而会增强兴奋性锥体神经元的放电频率和同步性,即同步化的抑制后反弹(PIR)放电。这一复杂现象呈现了中间神经元的矛盾功能以及癫痫发作的新病因。在本研究中,在抑制性中间神经元和兴奋性锥体神经元的网络模型中获得了同步化PIR放电的非线性机制和条件。在分叉附近具有低放电频率的锥体神经元,其特征是超极化激活阳离子(Ih)电流的小电导(gh)和小的外加电流,容易产生PIR放电。激活具有高放电频率的中间神经元和具有大电导的抑制性突触的强光遗传学刺激有助于PIR放电。此外,在光遗传学刺激后,从锥体神经元到中间神经元的兴奋性突触电流可诱导中间神经元放电以减少PIR放电。降低中间神经元的膜电位可增强PIR放电的兴奋性突触电导范围。PIR放电可通过Ih电流的超极化激活与由gh和抑制性刺激调制的膜电位之间的复杂非线性相互作用来解释。此外,对于较低频率的放电,PIR放电出现更高的同步度。在抑制性刺激期间,锥体神经元变得沉默,膜电位差异很小,在放电之间的长时间间隔内保持不变,并在刺激后导致强烈的同步。同步化PIR放电的非线性机制和条件有助于认识和调节癫痫发作。