Athanasakis-Kaklamanakis M, Wilkins S G, Skripnikov L V, Koszorús Á, Breier A A, Ahmad O, Au M, Bai S W, Belošević I, Berbalk J, Berger R, Bernerd C, Bissell M L, Borschevsky A, Brinson A, Chrysalidis K, Cocolios T E, de Groote R P, Dorne A, Fajardo-Zambrano C M, Field R W, Flanagan K T, Franchoo S, Garcia Ruiz R F, Gaul K, Geldhof S, Giesen T F, Hanstorp D, Heinke R, Imgram P, Isaev T A, Kyuberis A A, Kujanpää S, Lalanne L, Lassègues P, Lim J, Liu Y C, Lynch K M, McGlone A, Mei W C, Neyens G, Nichols M, Nies L, Pašteka L F, Perrett H A, Raggio A, Reilly J R, Rothe S, Smets E, Udrescu S-M, van den Borne B, Wang Q, Warbinek J, Wessolek J, Yang X F, Zülch C
Experimental Physics Department, CERN, Geneva, Switzerland.
KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven, Belgium.
Nat Commun. 2025 Mar 3;16(1):2139. doi: 10.1038/s41467-025-55977-w.
Highly accurate and precise electronic structure calculations of heavy radioactive atoms and their molecules are important for several research areas, including chemical, nuclear, and particle physics. Ab initio quantum chemistry can elucidate structural details in these systems that emerge from the interplay of relativistic and electron correlation effects, but the large number of electrons complicates the calculations, and the scarcity of experiments prevents insightful theory-experiment comparisons. Here we report the spectroscopy of the 14 lowest excited electronic states in the radioactive molecule radium monofluoride (RaF), which is proposed as a sensitive probe for searches of new physics. The observed excitation energies are compared with state-of-the-art relativistic Fock-space coupled cluster calculations, which achieve an agreement of ≥99.64% (within ~12 meV) with experiment for all states. Guided by theory, a firm assignment of the angular momentum and term symbol is made for 10 states and a tentative assignment for 4 states. The role of high-order electron correlation and quantum electrodynamics effects in the excitation energies is studied and found to be important for all states.
对重放射性原子及其分子进行高度精确的电子结构计算,对于包括化学、核物理和粒子物理在内的多个研究领域都很重要。从头算量子化学能够阐明这些系统中由相对论效应和电子相关效应相互作用产生的结构细节,但大量的电子使计算变得复杂,且实验的稀缺性阻碍了有深度的理论与实验对比。在此,我们报告了放射性分子一氟化镭(RaF)中14个最低激发电子态的光谱,该分子被提议作为探索新物理的灵敏探针。将观测到的激发能与最先进的相对论性福克空间耦合簇计算结果进行比较,所有态的计算结果与实验结果的吻合度≥99.64%(在约12毫电子伏特范围内)。在理论的指导下,对10个态进行了角动量和光谱项符号的确切归属,对4个态进行了初步归属。研究了高阶电子相关和量子电动力学效应在激发能中的作用,发现其对所有态都很重要。