Suppr超能文献

使用大语言模型和混合自然语言处理模型对医生笔记进行高通量表型分析

High Throughput Phenotyping of Physician Notes with Large Language and Hybrid NLP Models.

作者信息

Munzir Syed I, Hier Daniel B, Carrithers Michael D

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul;2024:1-5. doi: 10.1109/EMBC53108.2024.10782119.

Abstract

Deep phenotyping is the detailed description of patient signs and symptoms using concepts from an ontology. The deep phenotyping of the numerous physician notes in electronic health records requires high throughput methods. Over the past 30 years, progress toward making high-throughput phenotyping feasible. In this study, we demonstrate that a large language model and a hybrid NLP model (combining word vectors with a machine learning classifier) can perform high throughput phenotyping on physician notes with high accuracy. Large language models will likely emerge as the preferred method for high throughput deep phenotyping physician notes.Clinical relevance: Large language models will likely emerge as the dominant method for the high throughput phenotyping of signs and symptoms in physician notes.

摘要

深度表型分析是使用本体论中的概念对患者体征和症状进行详细描述。对电子健康记录中大量医生记录进行深度表型分析需要高通量方法。在过去30年里,在使高通量表型分析可行方面取得了进展。在本研究中,我们证明了一个大语言模型和一个混合自然语言处理模型(将词向量与机器学习分类器相结合)可以对医生记录进行高精度的高通量表型分析。大语言模型可能会成为对医生记录进行高通量深度表型分析的首选方法。临床相关性:大语言模型可能会成为对医生记录中的体征和症状进行高通量表型分析的主导方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验