Pi Yihan, Chen Jijing, Ding Kaixuan, Zhang Tongyan, Zhang Hao, Zhang Bingxue, Guo Junhao, Tian Zhen, Li Jiao
College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
Center for Terahertz Waves, Tianjin University, Tianjin 300072, China.
Photoacoustics. 2025 Feb 17;42:100697. doi: 10.1016/j.pacs.2025.100697. eCollection 2025 Apr.
Imaging speed is critical for photoacoustic microscopy as it affects the capability to capture dynamic biological processes and support real-time clinical applications. Conventional approaches for increasing imaging speed typically involve high-repetition-rate lasers, which pose a risk of thermal damage to samples. Here, we propose a deep-learning-driven optical-scanning undersampling method for photoacoustic remote sensing (PARS) microscopy, accelerating imaging acquisition while maintaining a constant laser repetition rate and reducing laser dosage. We develop a hybrid Transformer-Convolutional Neural Network, HTC-GAN, to address the challenges of both nonuniform sampling and motion misalignment inherent in optical-scanning undersampling. A mouse ear vasculature image dataset is created through our customized galvanometer-scanned PARS system to train and validate HTC-GAN. The network successfully restores high-quality images from 1/2-undersampled and 1/4-undersampled data, closely approximating the ground truth images. A series of performance experiments demonstrate that HTC-GAN surpasses the basic misalignment compensation algorithm, and standalone CNN or Transformer networks in terms of perceptual quality and quantitative metrics. Moreover, three-dimensional imaging results validate the robustness and versatility of the proposed optical-scanning undersampling imaging method across multiscale scanning modes. Our method achieves a fourfold improvement in PARS imaging speed without hardware upgrades, offering an available solution for enhancing imaging speed in other optical-scanning microscopic systems.
成像速度对于光声显微镜至关重要,因为它影响捕获动态生物过程以及支持实时临床应用的能力。传统的提高成像速度的方法通常涉及高重复率激光器,这会对样品造成热损伤风险。在此,我们提出一种用于光声遥感(PARS)显微镜的深度学习驱动的光学扫描欠采样方法,在保持激光重复率恒定并减少激光剂量的同时加速成像采集。我们开发了一种混合Transformer-卷积神经网络HTC-GAN,以应对光学扫描欠采样中固有的非均匀采样和运动失准这两个挑战。通过我们定制的振镜扫描PARS系统创建了一个小鼠耳血管图像数据集,用于训练和验证HTC-GAN。该网络成功地从1/2欠采样和1/4欠采样数据中恢复高质量图像,与真实图像非常接近。一系列性能实验表明,HTC-GAN在感知质量和定量指标方面优于基本的失准补偿算法以及独立的CNN或Transformer网络。此外,三维成像结果验证了所提出的光学扫描欠采样成像方法在多尺度扫描模式下的鲁棒性和通用性。我们的方法在不进行硬件升级的情况下使PARS成像速度提高了四倍,为提高其他光学扫描显微镜系统的成像速度提供了一种可行的解决方案。