Hackenberg Maren, Brunn Niklas, Vogel Tanja, Binder Harald
Institute of Medical Biometry and Statistics (IMBI), Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.
Freiburg Center for Data Analysis, Modeling and AI, University of Freiburg, Freiburg, Germany.
Commun Biol. 2025 Mar 11;8(1):414. doi: 10.1038/s42003-025-07872-9.
Dimensionality reduction greatly facilitates the exploration of cellular heterogeneity in single-cell RNA sequencing data. While most of such approaches are data-driven, it can be useful to incorporate biologically plausible assumptions about the underlying structure or the experimental design. We propose the boosting autoencoder (BAE) approach, which combines the advantages of unsupervised deep learning for dimensionality reduction and boosting for formalizing assumptions. Specifically, our approach selects small sets of genes that explain latent dimensions. As illustrative applications, we explore the diversity of neural cell identities and temporal patterns of embryonic development.
降维极大地促进了对单细胞RNA测序数据中细胞异质性的探索。虽然大多数此类方法是数据驱动的,但纳入关于潜在结构或实验设计的生物学上合理的假设可能会很有用。我们提出了增强自动编码器(BAE)方法,该方法结合了无监督深度学习进行降维和增强以形式化假设的优点。具体来说,我们的方法选择解释潜在维度的小基因集。作为示例应用,我们探索了神经细胞身份的多样性和胚胎发育的时间模式。