Hankov Nicolas, Caban Miroslav, Demesmaeker Robin, Roulet Margaux, Komi Salif, Xiloyannis Michele, Gehrig Anne, Varescon Camille, Spiess Martina Rebeka, Maggioni Serena, Basla Chiara, Koginov Gleb, Haufe Florian, D'Ercole Marina, Harte Cathal, Hernandez-Charpak Sergio D, Paley Aurelie, Tschopp Manon, Herrmann Natacha, Intering Nadine, Baaklini Edeny, Acquati Francesco, Jacquet Charlotte, Watrin Anne, Ravier Jimmy, Merlos Frédéric, Eberlé Grégoire, Van den Keybus Katrien, Lambert Hendrik, Lorach Henri, Buschman Rik, Buse Nicholas, Denison Timothy, De Bon Dino, Duarte Jaime E, Riener Robert, Ijspeert Auke, Wagner Fabien, Tobler Sebastian, Asboth Léonie, von Zitzewitz Joachim, Bloch Jocelyne, Courtine Grégoire
NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
Sci Robot. 2025 Mar 12;10(100):eadn5564. doi: 10.1126/scirobotics.adn5564.
Rehabilitation robotics aims to promote activity-dependent reorganization of the nervous system. However, people with paralysis cannot generate sufficient activity during robot-assisted rehabilitation and, consequently, do not benefit from these therapies. Here, we developed an implantable spinal cord neuroprosthesis operating in a closed loop to promote robust activity during walking and cycling assisted by robotic devices. This neuroprosthesis is device agnostic and designed for seamless implementation by nonexpert users. Preliminary evaluations in participants with paralysis showed that the neuroprosthesis enabled well-organized patterns of muscle activity during robot-assisted walking and cycling. A proof-of-concept study suggested that robot-assisted rehabilitation augmented by the neuroprosthesis promoted sustained neurological improvements. Moreover, the neuroprosthesis augmented recreational walking and cycling activities outdoors. Future clinical trials will have to confirm these findings in a broader population.
康复机器人技术旨在促进神经系统依赖活动的重组。然而,瘫痪患者在机器人辅助康复过程中无法产生足够的活动,因此无法从这些治疗中受益。在此,我们开发了一种可植入的脊髓神经假体,其以闭环方式运行,以在机器人设备辅助的步行和骑行过程中促进有力的活动。这种神经假体与设备无关,专为非专业用户无缝实施而设计。对瘫痪参与者的初步评估表明,该神经假体在机器人辅助的步行和骑行过程中能够实现肌肉活动的良好组织模式。一项概念验证研究表明,由该神经假体增强的机器人辅助康复促进了持续的神经功能改善。此外,该神经假体增强了户外的休闲步行和骑行活动。未来的临床试验将必须在更广泛的人群中证实这些发现。