Bégin Jean-Luc, Karimi Ebrahim, Corkum Paul, Brabec Thomas, Bhardwaj Ravi
Nexus for Quantum Technologies, Department of Physics, University of Ottawa, Ottawa, ON, Canada.
Nat Commun. 2025 Mar 12;16(1):2467. doi: 10.1038/s41467-025-57618-8.
Tunnel ionization, the fundamental process in strong field physics and attosecond science, along with the subsequent electron dynamics are typically governed by the polarization and carrier envelope phase of the incident laser pulse. Moreover, most light-matter interactions involve Gaussian beams and rely primarily on dipole-active transitions. In this article, we reveal that Orbital Angular Momentum (OAM) carrying beams enable to control tunnel ionization in atoms and molecules. The ionization process is manipulated by the sign and value of the OAM and by displacing the phase singularity. We show that the helical phase and field gradients inherent in the higher-order multipole expansion of the tunneling process cause ionization to depend on OAM. Simulations indicate that, in contrast to Gaussian beams, the ponderomotive effects can also be controlled with OAM and the asymmetry in the optical vortex. Our findings have an impact on attosecond science, spectroscopy, and super-resolution microscopy.
隧道电离是强场物理和阿秒科学中的基本过程,其随后的电子动力学通常由入射激光脉冲的偏振和载波包络相位决定。此外,大多数光与物质的相互作用涉及高斯光束,并且主要依赖于偶极活性跃迁。在本文中,我们揭示了携带轨道角动量(OAM)的光束能够控制原子和分子中的隧道电离。电离过程通过OAM的符号和值以及通过移动相位奇点来操纵。我们表明,隧道过程的高阶多极展开中固有的螺旋相位和场梯度导致电离依赖于OAM。模拟表明,与高斯光束不同,有质动力效应也可以通过OAM和光学涡旋中的不对称性来控制。我们的发现对阿秒科学、光谱学和超分辨率显微镜有影响。