Liu Jihang, Ng Doris Keh Ting, Koh Yul, Samanta Subhranu, Chen Weiguo, Md Husni Md Hazwani Khairy, Srinivas Merugu, Zhang Qingxin, Kai Fuu Ming, Chang Peter Hyun Kee, Zhu Yao
Institute of Microelectronics (IME), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-02, Singapore 138634, Republic of Singapore.
National Metrology Centre (NMC), Agency for Science, Technology and Research (A*STAR), 8 Cleantech Loop, #01-20, Singapore 637145, Republic of Singapore.
ACS Sens. 2025 Mar 28;10(3):1922-1929. doi: 10.1021/acssensors.4c03069. Epub 2025 Mar 13.
Highly sensitive, selective, and compact hydrogen (H) sensors for safety and process monitoring are needed due to the growing adoption of H as a clean energy carrier. Current resonant frequency-based H sensors face a critical challenge in simultaneously achieving high sensitivity, low operating frequency, and miniaturization while maintaining a high figure of merit (FOM). This study addresses these challenges by introducing a novel piezoelectric micro diagram (PMD) H sensor that achieves an unprecedented FOM exceeding 10. The sensor uniquely integrates a PMD resonator with a palladium (Pd) sensing layer, operating on a stress-based mechanism distinct from traditional mass-loading principles. Despite a low operating frequency of 150 kHz, the sensor demonstrates a remarkable sensitivity of 18.5 kHz/% H. Comprehensive characterization also reveals a minimal cross-sensitivity to humidity and common gases and a compact form factor (600 μm lateral length) suitable for IC integration. The sensor's performance was systematically evaluated across various Pd thicknesses (40-125 nm) and piezoelectric stack covering ratios (50% and 70%), revealing a trade-off between sensitivity and response time. This PMD H sensor represents a significant advancement in resonant frequency-based H sensing, offering superior sensitivity, compact size, and robust performance for diverse applications in H detection and monitoring.
由于氢气(H)作为清洁能源载体的使用日益广泛,因此需要用于安全和过程监测的高灵敏度、高选择性且紧凑的氢气传感器。当前基于共振频率的氢气传感器在同时实现高灵敏度、低工作频率和小型化,同时保持高优值(FOM)方面面临着严峻挑战。本研究通过引入一种新型压电微图(PMD)氢气传感器来应对这些挑战,该传感器实现了超过10的前所未有的优值。该传感器独特地将PMD谐振器与钯(Pd)传感层集成在一起,基于与传统质量负载原理不同的应力机制工作。尽管工作频率低至150 kHz,但该传感器仍表现出18.5 kHz/% H的显著灵敏度。全面的表征还显示,该传感器对湿度和常见气体的交叉灵敏度极低,并且具有适合集成电路集成的紧凑外形尺寸(横向长度600μm)。在各种钯厚度(40 - 125 nm)和压电堆栈覆盖率(50%和70%)下对该传感器的性能进行了系统评估,结果表明灵敏度和响应时间之间存在权衡。这种PMD氢气传感器代表了基于共振频率的氢气传感技术的重大进步,为氢气检测和监测中的各种应用提供了卓越的灵敏度、紧凑的尺寸和强大的性能。