Suppr超能文献

影响脂质代谢和预后的卵巢癌单核苷酸多态性:一项整合的TCGA数据库分析

Single nucleotide polymorphisms in ovarian cancer impacting lipid metabolism and prognosis: an integrated TCGA database analysis.

作者信息

Wang Haoyu, Tu Tian, Yin Lijun, Liu Zhenfeng, Lu Hui

机构信息

Zhejiang University School of Medicine, #866 Yuhangtang RoadZhejiang Province, Hangzhou, 3100058, People's Republic of China.

Plastic & Cosmetic Center, College of Medicine, The First Affiliated Hospital, Zhejiang University, #79 Qingchun RoadZhejiang Province, Hangzhou, 310003, People's Republic of China.

出版信息

BMC Cancer. 2025 Mar 13;25(1):462. doi: 10.1186/s12885-025-13841-6.

Abstract

Ovarian cancer (OC) stands as a formidable adversary among women, remaining a leading cause of cancer-related mortality owing to its aggressive and invasive nature. Investigating prognostic markers intricately linked to OC's molecular pathogenesis represents a critical avenue for enhancing patient outcomes and survival prospects. In this comprehensive study, we embarked on a bioinformatics journey, leveraging the vast repository of single nucleotide polymorphism (SNP) data from OC patients available within the TCGA database. Our overarching goal was to unearth the genetic underpinnings of OC, shedding light on potential prognostic markers that could significantly impact clinical decision-making and patient care. Our meticulous analysis led to the discovery of five mutated genes-APOB, BRCA1, COL6A3, LRP1, and LRP1B-engaged in the intricate world of lipid metabolism. These genes, previously unexplored in the context of OC, emerged as prominent figures in our investigation, showcasing their potential roles in OC progression. The intricate interplay between lipid metabolism and cancer development has garnered considerable attention in recent years, and our findings underscore the relevance of these genes in the context of OC. To fortify our discoveries, we delved into the realm of survival analysis, a pivotal component of our investigation. The results yielded compelling evidence of significant correlations between patient survival and the expression levels of the aforementioned genes. This critical insight underscores the potential utility of these genes as prognostic markers, illuminating a path toward more personalized and effective approaches to patient care. Our study represents a multifaceted approach to unraveling the complex molecular pathogenesis of OC. By harnessing the power of high-throughput data mining, we uncovered genetic insights that may reshape our understanding of this formidable disease. We complemented these findings with advanced techniques such as RT-qPCR and Western blot, further dissecting the intricacies of OC's molecular landscape. This holistic approach not only deepens our understanding but also provides essential bioinformatics information that holds promise in assessing patient prognosis. In summary, our study represents a significant stride in the quest to decode the molecular intricacies of ovarian cancer. Our findings spotlight the potential prognostic significance of APOB, BRCA1, COL6A3, LRP1, and LRP1B, inviting further exploration into their roles in OC progression. Ultimately, our research carries the potential to shape the future of OC management, offering a glimpse into a more personalized and effective approach to patient care.

摘要

卵巢癌(OC)是女性健康的一大劲敌,因其具有侵袭性和转移性,一直是癌症相关死亡的主要原因。研究与OC分子发病机制密切相关的预后标志物是改善患者预后和生存前景的关键途径。在这项全面的研究中,我们踏上了一段生物信息学之旅,利用TCGA数据库中OC患者的单核苷酸多态性(SNP)数据宝库。我们的总体目标是揭示OC的遗传基础,阐明可能显著影响临床决策和患者护理的潜在预后标志物。我们细致的分析发现了五个参与脂质代谢复杂过程的突变基因——载脂蛋白B(APOB)、乳腺癌1号基因(BRCA1)、胶原蛋白VIα3链(COL6A3)、低密度脂蛋白受体相关蛋白1(LRP1)和低密度脂蛋白受体相关蛋白1B(LRP1B)。这些基因在OC背景下此前未被研究过,在我们的研究中成为突出的研究对象,展示了它们在OC进展中的潜在作用。近年来,脂质代谢与癌症发展之间的复杂相互作用受到了广泛关注,我们的研究结果强调了这些基因在OC背景下的相关性。为了加强我们的发现,我们深入研究了生存分析领域,这是我们研究的关键组成部分。结果产生了令人信服的证据,表明患者生存与上述基因的表达水平之间存在显著相关性。这一关键见解强调了这些基因作为预后标志物的潜在效用,为更个性化、更有效的患者护理方法指明了道路。我们的研究代表了一种多方面的方法来揭示OC复杂的分子发病机制。通过利用高通量数据挖掘的力量,我们发现了可能重塑我们对这种可怕疾病理解的遗传见解。我们用逆转录定量聚合酶链反应(RT-qPCR)和蛋白质免疫印迹法(Western blot)等先进技术对这些发现进行补充,进一步剖析OC分子格局的复杂性。这种整体方法不仅加深了我们的理解,还提供了在评估患者预后方面具有前景的重要生物信息学信息。总之,我们的研究在解码卵巢癌分子复杂性的探索中迈出了重要一步。我们的发现突出了APOB、BRCA1、COL6A3、LRP1和LRP1B的潜在预后意义,促使人们进一步探索它们在OC进展中的作用。最终,我们的研究有可能塑造OC管理的未来,为更个性化、更有效的患者护理方法提供思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a056/11907782/6b7f074be74c/12885_2025_13841_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验