Blanch-Granada Aloma, Boulafentis Theofilos, Lim Chung Sim, Tsui Janice, Díaz-Zuccarini Vanessa, Balabani Stavroula
Department of Mechanical Engineering, University College London, London, UK; UCL Hawkes Institute, University College London, London, UK.
Department of Mechanical Engineering, University College London, London, UK.
J Biomech. 2025 Apr;183:112604. doi: 10.1016/j.jbiomech.2025.112604. Epub 2025 Mar 7.
Peripheral Arteriovenous Malformations (pAVMs) are congenital vascular anomalies characterised by abnormal connections between arteries and veins that bypass the capillary network. This bypass results on a high-flow and low resistance vascular structure termed nidus. The high-flow and complex angioarchitecture of pAVMs makes treatment challenging and often suboptimal, as evidenced by high recurrence rates. Current treatment strategies rely on qualitative imaging techniques. Quantitative haemodynamic information on pAVMs can provide insight into the pathology and potentially enhance intervention outcomes. We report an experimental study on pAVMs haemodynamics resolved using patient-specific 3D-printed phantoms and Particle Image Velocimetry. A 3D printable porous structure was implemented to reproduce the pressure drop the blood flow experiences as it passes through the nidus, derived from in vivo patient data. Velocity measurements past the nidus revealed complex flow patterns, due to the high flow nature of the pAVM and the vessel anatomy which could potentially serve as biomarkers to assess the efficacy of interventions and the disease severity and progression. To the best of our knowledge this is the first in vitro study to combine patient-specific phantoms and detailed velocity distributions in a pAVM. The in vitro approach reported herein can be used for in silico model validation, physical intervention testing and to inform data driven methodologies that could all optimise pAVM procedures and reduce recurrence rates.
外周动静脉畸形(pAVM)是一种先天性血管异常,其特征是动脉和静脉之间存在异常连接,绕过了毛细血管网络。这种分流导致了一种称为病灶的高流量、低阻力血管结构。pAVM的高流量和复杂血管结构使得治疗具有挑战性,且往往效果不佳,高复发率就证明了这一点。目前的治疗策略依赖于定性成像技术。关于pAVM的定量血流动力学信息可以深入了解其病理情况,并有可能提高干预效果。我们报告了一项关于使用患者特异性3D打印模型和粒子图像测速技术解析pAVM血流动力学的实验研究。采用了一种3D可打印的多孔结构来再现血液流经病灶时所经历的压降,该压降源自患者的体内数据。病灶下游的速度测量显示出复杂的流动模式,这是由于pAVM的高流量特性和血管解剖结构所致,这些流动模式有可能作为生物标志物来评估干预效果以及疾病的严重程度和进展情况。据我们所知,这是第一项将患者特异性模型与pAVM中详细的速度分布相结合的体外研究。本文报道的体外方法可用于计算机模型验证、物理干预测试,并为数据驱动方法提供信息,所有这些都可以优化pAVM手术并降低复发率。