Huang Angus, Teh Yee-Heng, Chen Chin-Hsuan, Hung Sheng-Hsiung, Wang Jer-Fu, Chuu Chih-Piao, Jeng Horng-Tay
Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan.
Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan.
ACS Mater Au. 2025 Jan 20;5(2):430-437. doi: 10.1021/acsmaterialsau.4c00176. eCollection 2025 Mar 12.
High work function metals are crucial in various semiconductor applications. Titanium nitride (TiN) is particularly noteworthy as a high work function material in metal gate structures, which significantly enhances the transistor performance and reliability in advanced semiconductor devices. In this study, we employ first-principles calculations to demonstrate that the TiN work function oscillates with thickness due to the quantum well state effect. Furthermore, we investigate the termination and surface dependence of the work function across different crystallographic orientations. We show that the work function can be enhanced to up to 8.04 eV for TiN(111) with N-termination at five monolayers (5 MLs). Our findings provide valuable insights for fine-tuning the high work function of TiN.
高功函数金属在各种半导体应用中至关重要。氮化钛(TiN)作为金属栅极结构中的高功函数材料尤其值得关注,它能显著提高先进半导体器件中晶体管的性能和可靠性。在本研究中,我们采用第一性原理计算来证明,由于量子阱态效应,TiN的功函数随厚度振荡。此外,我们研究了不同晶体取向的功函数的终止和表面依赖性。我们表明,对于具有N端终止的TiN(111),在五个单层(5 MLs)时,功函数可提高到8.04 eV。我们的研究结果为微调TiN的高功函数提供了有价值的见解。