Aparicio Mario, Mosa Jadra, Gómez-Herrero Miguel, Abd Al-Jaleel Zainab, Guzman Jennifer, Jitianu Mihaela, Klein Lisa C, Jitianu Andrei
Instituto de Ceramica y Vidrio, Consejo Superior de Investigaciones Científicas (CSIC), Kelsen 5 (Campus de Cantoblanco), 28049 Madrid, Spain.
Department of Chemistry, Lehman College, CUNY, Davis Hall, 250 Bedford Park Boulevard West Bronx, New York 10468, United States.
ACS Mater Au. 2025 Jan 28;5(2):409-420. doi: 10.1021/acsmaterialsau.4c00170. eCollection 2025 Mar 12.
Nonporous, crack-free hybrid glass coatings have provided excellent corrosion protection to the AZ31B magnesium alloy. However, if a crack develops in the coatings, then corrosion will proliferate at that point. The novelty of this study consists of engineering a bilayer protection system that combines the "barrier" properties of the hybrid glass coatings with the "inhibitor" or "self-healing" effect of an internal layer of mesoporous silica doped with cerium(III) ions. The mesoporous layer was obtained using a sol-gel solution with 1 mol % cerium(III) ions. The inner cerium-doped mesoporous coating has a thickness of 0.25 μm, and the electrochemical characterization through Open circuit potential (OCP) and Electrochemical Impedance Spectroscopy (EIS) indicates a corrosion inhibition process provided by cerium(III) ions triggered by the corrosion. The combination of the Ce-doped and hybrid glass coatings reaches a total thickness of 5.1 μm. The corrosion evaluation through OCP and EIS does not show any evidence of corrosion during the first 575 h of immersion. After this, there are several steps of a sudden drop in potential and subsequent recovery of the previous values, which could be associated with the activation of the corrosion inhibition mechanism provided by the Ce (III) ions. EIS show a maximum impedance module of 10 Ohm cm, a decrease of impedance values and phase angle fluctuations after the potential drops observed, and, then, a recovery of the previous values of impedance and phase angle. This behavior confirms activation of the corrosion inhibition mechanism. Polarization curves shows that the multilayer coating leads to a low current density (∼10 A cm), around 5 orders of magnitude lower in comparison with the bare substrate. A SEM-EDX analysis study, performed on the cracks generated during electrochemical testing, shows the accumulation of cerium as a consequence of the corrosion inhibitory process.
无孔、无裂纹的混合玻璃涂层为AZ31B镁合金提供了出色的防腐蚀保护。然而,如果涂层中出现裂纹,那么腐蚀将在该点扩散。本研究的新颖之处在于设计了一种双层保护系统,该系统将混合玻璃涂层的“阻挡”特性与掺杂铈(III)离子的介孔二氧化硅内层的“抑制剂”或“自修复”作用相结合。介孔层是使用含有1 mol%铈(III)离子的溶胶-凝胶溶液获得的。内部掺杂铈的介孔涂层厚度为0.25μm,通过开路电位(OCP)和电化学阻抗谱(EIS)进行的电化学表征表明,铈(III)离子引发了由腐蚀导致的缓蚀过程。掺杂铈的涂层与混合玻璃涂层的组合总厚度达到5.1μm。通过OCP和EIS进行的腐蚀评估表明,在浸泡的前575小时内没有任何腐蚀迹象。在此之后,有几个步骤表现为电位突然下降,随后恢复到先前的值,这可能与铈(III)离子提供的缓蚀机制的激活有关。EIS显示最大阻抗模量为10 Ohm cm²,在观察到电位下降后阻抗值降低且相角波动,然后,阻抗和相角恢复到先前的值。这种行为证实了缓蚀机制的激活。极化曲线表明,多层涂层导致低电流密度(约10⁻⁵ A/cm²),与裸基板相比低约5个数量级。对电化学测试过程中产生的裂纹进行的扫描电子显微镜-能量色散X射线光谱(SEM-EDX)分析研究表明,由于缓蚀过程,铈发生了积累。