Suppr超能文献

密度泛函理论中的自旋迁移:能量、势和密度视角。

Spin migration in density functional theory: Energy, potential, and density perspectives.

作者信息

Hayman Alon, Levy Nevo, Goshen Yuli, Fraenkel Malachi, Kraisler Eli, Stein Tamar

机构信息

Fritz Haber Research Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, 9091401 Jerusalem, Israel.

出版信息

J Chem Phys. 2025 Mar 21;162(11). doi: 10.1063/5.0241200.

Abstract

Spin is a fundamental property of any many-electron system. The ability of density functional theory to accurately predict the physical properties of a system, while varying its spin, is crucial for describing magnetic materials and high-spin molecules, spin flips, and magnetization and demagnetization processes. Within density functional theory, when using various exchange-correlation approximations, the exact dependence of the energy on the spin often deviates from the exact constant or piecewise-linear behavior, which is directly related to the problem of strong (static) correlation and challenges the description of molecular dissociation. In this paper, we study the behavior of the energy, the frontier Kohn-Sham (KS) and generalized KS (GKS) orbitals, the KS potentials, and the electron density, with respect to fractional spin, in different atomic systems. We analyze seven standard exchange-correlation functionals and find two main scenarios of deviation from the expected exact results. We clearly recognize a jump in the frontier orbital energies upon spin variation in the exact exchange and in hybrid functionals, as well as the related plateau in the corresponding KS potential, when using the optimized effective potential method within the KS scheme. When calculations are performed using the GKS approach, no jumps are observed, as expected. Moreover, we demonstrate that for high-spin systems, a full three-dimensional treatment is crucial; the spherical approximation commonly used in atoms causes a qualitative deviation. Our results are instrumental for the assessment of the quality of existing approximations from a new perspective and for the development of advanced functionals with sensitivity to magnetic properties.

摘要

自旋是任何多电子系统的基本属性。密度泛函理论在改变系统自旋的同时准确预测其物理性质的能力,对于描述磁性材料和高自旋分子、自旋翻转以及磁化和退磁过程至关重要。在密度泛函理论中,当使用各种交换关联近似时,能量对自旋的精确依赖关系往往偏离精确的常数或分段线性行为,这与强(静态)关联问题直接相关,并对分子解离的描述提出了挑战。在本文中,我们研究了不同原子系统中能量、前沿Kohn-Sham(KS)和广义KS(GKS)轨道、KS势以及电子密度相对于分数自旋的行为。我们分析了七种标准交换关联泛函,发现了与预期精确结果偏离的两种主要情况。当在KS方案中使用优化有效势方法时,我们清楚地认识到在精确交换和混合泛函中自旋变化时前沿轨道能量的跳跃,以及相应KS势中的相关平台。正如预期的那样,当使用GKS方法进行计算时,没有观察到跳跃。此外,我们证明对于高自旋系统,完整的三维处理至关重要;原子中常用的球近似会导致定性偏差。我们的结果有助于从新的角度评估现有近似的质量,并有助于开发对磁性性质敏感的先进泛函。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验