Suppr超能文献

非靶向逐像素代谢物比率成像作为质谱成像中生物医学发现的一种新工具。

Untargeted pixel-by-pixel metabolite ratio imaging as a novel tool for biomedical discovery in mass spectrometry imaging.

作者信息

Cheng Huiyong, Miller Dawson, Southwell Nneka, Porcari Paola, Fischer Joshua L, Taylor Isobel, Salbaum J Michael, Kappen Claudia, Hu Fenghua, Yang Cha, Keshari Kayvan R, Gross Steven S, D'Aurelio Marilena, Chen Qiuying

机构信息

Department of Pharmacology, Weill Cornell Medicine, New York, United States.

Brain and Mind Research Institute, Weill Cornell Medicine, New York City, United States.

出版信息

Elife. 2025 Mar 18;13:RP96892. doi: 10.7554/eLife.96892.

Abstract

Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of metabolites across tissue cryosections. While software packages exist for pixel-by-pixel individual metabolite and limited target pairs of ratio imaging, the research community lacks an easy computing and application tool that images any metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs may contribute to the discovery of unanticipated molecules in shared metabolic pathways. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling, markedly enhances spatial image contrast, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent hypothesis generation tool to enhance knowledge obtained from current spatial metabolite profiling technologies.

摘要

质谱成像(MSI)是一种强大的技术,用于确定代谢物在组织冷冻切片中的空间分布和相对丰度。虽然存在用于逐像素分析单个代谢物以及有限目标对的比率成像的软件包,但研究界缺乏一种易于计算和应用的工具来对任何代谢物丰度比进行成像。重要的是,识别相关代谢物对可能有助于在共享代谢途径中发现意外分子。在这里,我们描述了一种非靶向R包工作流程的开发和实施,用于对MSI实验中检测到的所有代谢物进行逐像素比率成像。考虑到对小鼠大脑和胚胎发育的非靶向MSI研究,我们证明比率成像可将样本处理引入的系统数据变化降至最低,显著增强空间图像对比度,并揭示以前未被识别的代谢型不同的组织区域。此外,比率成像有助于识别新的区域生物标志物,并提供有关代谢物相关生化途径空间分布的解剖学信息。本文所述算法适用于任何包含代谢物、肽或蛋白质空间信息的MSI数据集,提供了一个强大的假设生成工具,以增强从当前空间代谢物谱分析技术中获得的知识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3fd/11919253/44509a50dc7b/elife-96892-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验