Shim Joonsup, Lim Jinha, Kim Inki, Jeong Jaeyong, Kim Bong Ho, Kim Seong Kwang, Geum Dae-Myeong, Kim SangHyeon
School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea.
Department of Electrical & Computer Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea.
Light Sci Appl. 2025 Mar 19;14(1):125. doi: 10.1038/s41377-025-01803-3.
Waveguide-integrated mid-infrared (MIR) photodetectors are pivotal components for the development of molecular spectroscopy applications, leveraging mature photonic integrated circuit (PIC) technologies. Despite various strategies, critical challenges still remain in achieving broadband photoresponse, cooling-free operation, and large-scale complementary-metal-oxide-semiconductor (CMOS)-compatible manufacturability. To leap beyond these limitations, the bolometric effect - a thermal detection mechanism - is introduced into the waveguide platform. More importantly, we pursue a free-carrier absorption (FCA) process in germanium (Ge) to create an efficient light-absorbing medium, providing a pragmatic solution for full coverage of the MIR spectrum without incorporating exotic materials into CMOS. Here, we present an uncooled waveguide-integrated photodetector based on a Ge-on-insulator (Ge-OI) PIC architecture, which exploits the bolometric effect combined with FCA. Notably, our device exhibits a broadband responsivity of 28.35%/mW across 4030-4360 nm (and potentially beyond), challenging the state of the art, while achieving a noise-equivalent power of 4.03 × 10W/Hz at 4180 nm. We further demonstrate label-free sensing of gaseous carbon dioxide (CO) using our integrated photodetector and sensing waveguide on a single chip. This approach to room-temperature waveguide-integrated MIR photodetection, harnessing bolometry with FCA in Ge, not only facilitates the realization of fully integrated lab-on-a-chip systems with wavelength flexibility but also provides a blueprint for MIR PICs with CMOS-foundry-compatibility.
波导集成中红外(MIR)光电探测器是利用成熟光子集成电路(PIC)技术发展分子光谱应用的关键组件。尽管有各种策略,但在实现宽带光响应、无制冷运行以及大规模互补金属氧化物半导体(CMOS)兼容的可制造性方面,仍存在重大挑战。为了突破这些限制,热辐射效应——一种热探测机制——被引入到波导平台中。更重要的是,我们在锗(Ge)中追求自由载流子吸收(FCA)过程,以创建一种高效的光吸收介质,为在不将外来材料纳入CMOS的情况下实现MIR光谱的全覆盖提供了切实可行的解决方案。在此,我们展示了一种基于绝缘体上锗(Ge-OI)PIC架构的非制冷波导集成光电探测器,该探测器利用了热辐射效应与FCA相结合的原理。值得注意的是,我们的器件在4030 - 4360 nm(甚至可能更宽范围)内展现出28.35%/mW的宽带响应率,挑战了现有技术水平,同时在4180 nm处实现了4.03×10W/Hz的噪声等效功率。我们还进一步展示了在单个芯片上使用我们的集成光电探测器和传感波导对气态二氧化碳(CO)进行无标记传感。这种利用锗中的FCA热辐射测量法实现室温波导集成MIR光电探测的方法,不仅有助于实现具有波长灵活性的全集成芯片实验室系统,还为具有CMOS代工厂兼容性的MIR PIC提供了蓝图。