Jamal Sadia, Raza Nadeem, Khalid Muhammad, Braga Ataualpa Albert Carmo
Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan.
Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh Saudi Arabia
RSC Adv. 2025 Mar 17;15(11):8262-8274. doi: 10.1039/d5ra00864f.
Boron-nitrogen carbazole (BNCz) based aromatic chromophores have been considered as promising materials in non-linear optical domains due to their distinctive electronic and charge-transfer capabilities. This study presents the electronic and non-linear optical properties of BNCz-based compounds (BTNC-BNPZ). Additionally, a new series of four BNCz-based compounds (BNTP-BNTO) with D-π-A framework was designed by modifying the donors and π-spacer. Structural optimization and optoelectronic properties of BNCz based compounds were determined using density functional theory/time-dependent density functional theory (DFT/TD-DFT) calculations at M06/6-311G(d,p) level. The optimized structures were used to perform frontier molecular orbitals (FMOs), density of states (DOS), transition density matrix (TDM), UV-Visible and non-linear optical (NLO) analyses of examined compounds. The red-shifted absorption spectrum (412.854-566.138 nm) combined with a suitable energy gap (2.784-3.774 eV) facilitates significant charge migration from HOMO to LUMO. The global reactivity descriptors revealed notable softness and significant chemical reactivity in all above-mentioned chromophores. Among all the studied compounds, BNPZ displayed the narrowest band gap (2.784 eV), the highest absorption peak (566.138 nm), and lowest excitation energy (2.190 eV), highlighting its remarkable electronic characteristics. Furthermore, DOS visualizations and TDM heat maps support the FMO findings, confirming the presence of charge densities in a chromophore. All the compounds showed an increased exciton dissociation rate due to their lower exciton binding energy values ( = 0.771-0.480 eV). Moreover, NBO analysis revealed that enhanced hyperconjugation and strong intramolecular interactions played a crucial role in stabilizing the studied compounds. Among all the derivatives, BNTP exhibited the highest (74.0 × 10 esu) and (81.1 × 10 esu) values, suggesting its promising potential as an NLO material.
基于硼氮咔唑(BNCz)的芳香发色团因其独特的电子和电荷转移能力,在非线性光学领域被视为有前景的材料。本研究展示了基于BNCz的化合物(BTNC - BNPZ)的电子和非线性光学性质。此外,通过修饰供体和π - 间隔基,设计了一系列具有D - π - A框架的新型四种基于BNCz的化合物(BNTP - BNTO)。使用密度泛函理论/含时密度泛函理论(DFT/TD - DFT)在M06/6 - 311G(d,p)水平上确定基于BNCz的化合物的结构优化和光电性质。利用优化后的结构对所研究化合物进行前沿分子轨道(FMO)、态密度(DOS)、跃迁密度矩阵(TDM)、紫外 - 可见和非线性光学(NLO)分析。红移的吸收光谱(412.854 - 566.138 nm)与合适的能隙(2.784 - 3.774 eV)相结合,有利于电荷从最高占据分子轨道(HOMO)到最低未占据分子轨道(LUMO)的显著迁移。全局反应性描述符揭示了上述所有发色团具有显著的柔软性和显著的化学反应性。在所有研究的化合物中,BNPZ显示出最窄的带隙(2.784 eV)、最高的吸收峰(566.138 nm)和最低的激发能(2.190 eV),突出了其显著的电子特性。此外,DOS可视化和TDM热图支持FMO的研究结果,证实了发色团中电荷密度的存在。由于其较低的激子结合能值( = 0.771 - 0.480 eV),所有化合物的激子解离速率都有所增加。此外,自然键轨道(NBO)分析表明,增强的超共轭和强分子内相互作用在稳定所研究的化合物中起关键作用。在所有衍生物中,BNTP表现出最高的 (74.0×10 esu)和 (81.1×10 esu)值,表明其作为非线性光学材料具有广阔的应用前景。