Goodburn Rosie, Bruijnen Tom, Lecoeur Bastien, Nair Prashant, Ahmed Merina, Barnes Helen, Oelfke Uwe, Wetscherek Andreas
Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom.
The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom.
Magn Reson Med. 2025 Jul;94(1):28-40. doi: 10.1002/mrm.30505. Epub 2025 Mar 19.
To measure the gradient system transfer function (GSTF) of an MR-Linac (Elekta Unity, Stockholm, Sweden) using an accessible phantom-based method and to apply trajectory corrections for UTE image reconstruction in the context of MR-guided radiotherapy of lung cancer.
The first-order GSTF of a 1.5 T, split gradient Elekta Unity MR-Linac was measured using a thin-slice technique to characterize gradient system imperfections for each physical gradient axis (X, Y, Z). Repeatability measurements of the GSTF were performed 48 h apart. The GSTF was applied to trajectory correction in multi-echo UTE image reconstruction (TEs = 0.176, 1.85, 3.52 ms) to allow for UTE-Dixon inputs in the generation of synthetic CT. Images were acquired in an anthropomorphic phantom and in two free-breathing lung cancer patients. For patient scans, respiratory-correlated 4D-MR images were reconstructed using self-navigation and an iterative compressed-sensing algorithm.
The GSTF magnitude was similar across the X/Y/Z axes up to ˜6 kHz. The GSTF phase was similar between the X/Y/Z components up to ˜3 kHz. Repeatability measurements demonstrated minimal variations corresponding to a system delay difference of 0.06 μs. Corrected UTE trajectory spokes are shifted approximately 1 m compared to the nominal k-space location. Corrected phantom and patient UTE images exhibited improved signal uniformity and contrast and reduced halo and signal loss artifacts. Trajectory correction for the later TE images did not improve overall image quality.
The proposed GSTF measurement method using standard MR-Linac hardware enables successful trajectory correction in UTE imaging reconstruction, with applications to lung synthetic CT generation for MR-guided radiotherapy.
使用一种基于可及体模的方法测量磁共振直线加速器(Elekta Unity,瑞典斯德哥尔摩)的梯度系统传递函数(GSTF),并在肺癌磁共振引导放疗的背景下对UTE图像重建应用轨迹校正。
使用薄片技术测量1.5 T、分离梯度的Elekta Unity磁共振直线加速器的一阶GSTF,以表征每个物理梯度轴(X、Y、Z)的梯度系统缺陷。GSTF的重复性测量在相隔48小时后进行。将GSTF应用于多回波UTE图像重建(TE = 0.176、1.85、3.52 ms)中的轨迹校正,以便在生成合成CT时进行UTE-Dixon输入。在一个仿真人体模和两名自由呼吸的肺癌患者中采集图像。对于患者扫描,使用自导航和迭代压缩感知算法重建呼吸相关的4D-MR图像。
在高达约6 kHz的频率范围内,X/Y/Z轴上的GSTF幅度相似。在高达约3 kHz的频率范围内,X/Y/Z分量之间的GSTF相位相似。重复性测量显示变化极小,对应系统延迟差异为0.06 μs。与标称k空间位置相比,校正后的UTE轨迹辐条偏移约1 m。校正后的体模和患者UTE图像显示出改善的信号均匀性和对比度,以及减少的光晕和信号丢失伪影。对较晚TE图像的轨迹校正并未改善整体图像质量。
所提出的使用标准磁共振直线加速器硬件的GSTF测量方法能够在UTE成像重建中成功进行轨迹校正,并应用于磁共振引导放疗的肺部合成CT生成。