Suppr超能文献

经皮冠状动脉介入治疗前微血管阻塞的早期预测

Early prediction of microvascular obstruction prior to percutaneous coronary intervention.

作者信息

Zhou Ziyu, Chen Qing, Zhang Zeqing, Wang Tingting, Zhao Yan, Chen Wensu, Zhang Zhuoqi, Li Shuyan, Song Boming

机构信息

Information Center, Chengdu Second People's Hospital, Chengdu, 610017, China.

Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, 223300, China.

出版信息

Sci Rep. 2025 Mar 19;15(1):9484. doi: 10.1038/s41598-025-94528-7.

Abstract

Early prediction of microvascular obstruction (MVO) occurrence in acute myocardial infarction (AMI) patients undergoing percutaneous coronary intervention (PCI) can facilitate personalized management and improve prognosis. This study developed a prediction model for MVO occurrence using preoperative clinical data and validated its performance in a prospective cohort. A total of 504 AMI patients were included, with 406 in the exploratory cohort and 98 in the prospective cohort. Feature selection was performed using random forest recursive feature elimination (RF-RFE), identifying five key predictors: High-Sensitivity Troponin T, Neutrophil Count, Creatine Kinase-MB, Fibrinogen, and Left Ventricular Ejection Fraction. Among the models developed, logistic regression demonstrated the highest predictive performance, achieving an AUC score of 0.800 in the exploratory cohort and 0.792 in the prospective cohort. This model has been integrated into a user-friendly online platform, providing a practical tool for guiding personalized perioperative management and improving patient prognosis.

摘要

对接受经皮冠状动脉介入治疗(PCI)的急性心肌梗死(AMI)患者微血管阻塞(MVO)发生情况进行早期预测,有助于实现个性化管理并改善预后。本研究利用术前临床数据建立了MVO发生的预测模型,并在前瞻性队列中验证了其性能。共纳入504例AMI患者,其中探索性队列406例,前瞻性队列98例。使用随机森林递归特征消除法(RF-RFE)进行特征选择,确定了五个关键预测指标:高敏肌钙蛋白T、中性粒细胞计数、肌酸激酶同工酶MB、纤维蛋白原和左心室射血分数。在所建立的模型中,逻辑回归显示出最高的预测性能,在探索性队列中的AUC得分为0.800,在前瞻性队列中的AUC得分为0.792。该模型已集成到一个用户友好的在线平台中,为指导个性化围手术期管理和改善患者预后提供了一个实用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3f7/11923210/097a0871be38/41598_2025_94528_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验