Zhou Ziyu, Chen Qing, Zhang Zeqing, Wang Tingting, Zhao Yan, Chen Wensu, Zhang Zhuoqi, Li Shuyan, Song Boming
Information Center, Chengdu Second People's Hospital, Chengdu, 610017, China.
Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, 223300, China.
Sci Rep. 2025 Mar 19;15(1):9484. doi: 10.1038/s41598-025-94528-7.
Early prediction of microvascular obstruction (MVO) occurrence in acute myocardial infarction (AMI) patients undergoing percutaneous coronary intervention (PCI) can facilitate personalized management and improve prognosis. This study developed a prediction model for MVO occurrence using preoperative clinical data and validated its performance in a prospective cohort. A total of 504 AMI patients were included, with 406 in the exploratory cohort and 98 in the prospective cohort. Feature selection was performed using random forest recursive feature elimination (RF-RFE), identifying five key predictors: High-Sensitivity Troponin T, Neutrophil Count, Creatine Kinase-MB, Fibrinogen, and Left Ventricular Ejection Fraction. Among the models developed, logistic regression demonstrated the highest predictive performance, achieving an AUC score of 0.800 in the exploratory cohort and 0.792 in the prospective cohort. This model has been integrated into a user-friendly online platform, providing a practical tool for guiding personalized perioperative management and improving patient prognosis.
对接受经皮冠状动脉介入治疗(PCI)的急性心肌梗死(AMI)患者微血管阻塞(MVO)发生情况进行早期预测,有助于实现个性化管理并改善预后。本研究利用术前临床数据建立了MVO发生的预测模型,并在前瞻性队列中验证了其性能。共纳入504例AMI患者,其中探索性队列406例,前瞻性队列98例。使用随机森林递归特征消除法(RF-RFE)进行特征选择,确定了五个关键预测指标:高敏肌钙蛋白T、中性粒细胞计数、肌酸激酶同工酶MB、纤维蛋白原和左心室射血分数。在所建立的模型中,逻辑回归显示出最高的预测性能,在探索性队列中的AUC得分为0.800,在前瞻性队列中的AUC得分为0.792。该模型已集成到一个用户友好的在线平台中,为指导个性化围手术期管理和改善患者预后提供了一个实用工具。
Egypt Heart J. 2025-9-5
Int J Cardiovasc Imaging. 2024-5