Suppr超能文献

用于自动化临床试验匹配的大语言模型。

Large language models for automating clinical trial matching.

作者信息

Layne Ethan, Olivas Claire, Hershenhouse Jacob, Ganjavi Conner, Cei Francesco, Gill Inderbir, Cacciamani Giovanni E

机构信息

USC Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine.

AI Center at USC Urology, USC Institute of Urology, University of Southern California, Los Angeles, California, USA.

出版信息

Curr Opin Urol. 2025 May 1;35(3):250-258. doi: 10.1097/MOU.0000000000001281. Epub 2025 Mar 20.

Abstract

PURPOSE OF REVIEW

The uses of generative artificial intelligence (GAI) technologies in medicine are expanding, with the use of large language models (LLMs) for matching patients to clinical trials of particular interest. This review provides an overview of the current ability of leveraging LLMs for clinical trial matching.

RECENT FINDINGS

This review article examines recent studies assessing the performance of LLMs in oncologic clinical trial matching. The research in this area has shown promising results when testing these system using artificially created datasets. In general, they looked at how LLMs can be used to match patient health records with clinical trial eligibility criteria. There is still a need for human oversight of the systems in their current state.

SUMMARY

Automated clinical trial matching can improve patient access and autonomy, reduce provider workload, and increase trial enrollment. However, it may potentially create a feeling of "false hope" for patients, can be difficult to navigate, and still requires human oversight. Providers may face a learning curve, while institutions must address data privacy concerns and ensure seamless EMR/EHR integration. Given this, additional studies are needed to ensure safety and efficacy of LLM-based clinical trial matching in oncology.

摘要

综述目的

生成式人工智能(GAI)技术在医学领域的应用正在不断扩展,其中大语言模型(LLM)被用于将患者与特定感兴趣的临床试验进行匹配。本综述概述了当前利用大语言模型进行临床试验匹配的能力。

最新发现

本文综述了近期评估大语言模型在肿瘤临床试验匹配中性能的研究。当使用人工创建的数据集测试这些系统时,该领域的研究已显示出有前景的结果。总体而言,他们研究了如何使用大语言模型将患者健康记录与临床试验纳入标准进行匹配。在当前状态下,这些系统仍需要人工监督。

总结

自动化临床试验匹配可以改善患者的参与机会和自主性,减轻医疗服务提供者的工作量,并增加试验入组人数。然而,它可能会给患者带来“虚假希望”的感觉,难以操作,并且仍然需要人工监督。医疗服务提供者可能面临学习曲线,而机构必须解决数据隐私问题并确保电子病历/电子健康记录的无缝集成。鉴于此,需要进行更多研究以确保基于大语言模型的肿瘤临床试验匹配的安全性和有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验