Montoya De Los Santos I, Courel Maykel, Moreno-Oliva Víctor Iván, Dueñas-Reyes Efraín, Díaz-Cruz Evelyn B, Ojeda-Martínez M, M Pérez Laura, Laroze David
Instituto de Estudios de la Energía, Universidad del Istmo, C.P. 70760, Santo Domingo Tehuantepec, Oaxaca, Mexico.
Centro Universitario de los Valles (CUValles), Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5, C.P. 46600, Ameca, Jalisco, Mexico.
Sci Rep. 2025 Mar 26;15(1):10353. doi: 10.1038/s41598-025-88338-0.
The perovskite solar cell has been the subject of intense breakdown lately because of its exceptional efficiency. Nevertheless, they confront a significant challenge due to the absorber layer's (perovskite) sensitivity to oxygen and water, which can cause rapid material degradation and adversely affect the solar cell's performance. The commonly used organic hole transport layer (HTL), Spiro-OMeTAD, tends to degrade over time, exacerbating the issue. To address this challenge, two-stage research was conducted. Initially, the CHNHPbI thin film was experimentally prepared, and XRD analysis confirmed the material's satisfactory crystalline phase (tetragonal), with a crystal size of 73.9 nm. An energy band gap of 1.55 eV was obtained experimentally, demonstrating good correspondence with the literature. Then, perovskites with different crystal structures (cubic, tetragonal, and orthorhombic) were calculated by DFT. These calculations obtained energy band gaps with values of 1.5 eV for the cubic, 1.7 eV for the tetragonal, and 3.9 eV for the orthorhombic. Subsequently, a numerical simulation study using SCAPS was carried out to validate the theoretical performance of an experimental solar cell with Spiro-OMeTAD as the HTL. Also, a simulation without HTL was performed to highlight its importance. Finally, comparative studies were conducted to evaluate the feasibility of incorporating CdTe and CIGS as inorganic absorbing layers within perovskite solar cells (MAPI). The objective was to investigate their potential for cooperative behavior in light absorption and charge transport. The findings indicated that the CIGS absorbing layer outperformed both materials, achieving an efficiency of 15.67%. Furthermore, an optimization study for the CIGS layer was performed, resulting in enhanced output parameters, including a maximum efficiency of 28.32%. This research represents a significant advancement in developing stable and efficient perovskite solar cells.
由于其卓越的效率,钙钛矿太阳能电池近来一直是深入研究的对象。然而,由于吸收层(钙钛矿)对氧气和水敏感,它们面临着重大挑战,这会导致材料迅速降解并对太阳能电池的性能产生不利影响。常用的有机空穴传输层(HTL),即Spiro-OMeTAD,往往会随着时间的推移而降解,加剧了这个问题。为应对这一挑战,开展了两阶段研究。首先,通过实验制备了CHNHPbI薄膜,XRD分析证实该材料具有令人满意的晶相(四方相),晶体尺寸为73.9纳米。通过实验获得的能带隙为1.55电子伏特,与文献显示出良好的一致性。然后,利用密度泛函理论(DFT)计算了具有不同晶体结构(立方相、四方相和正交相)的钙钛矿。这些计算得出的能带隙值分别为:立方相1.5电子伏特、四方相1.7电子伏特、正交相3.9电子伏特。随后,使用SCAPS进行了数值模拟研究,以验证以Spiro-OMeTAD作为HTL的实验太阳能电池的理论性能。此外,还进行了无HTL的模拟以突出其重要性。最后,进行了对比研究,以评估在钙钛矿太阳能电池(MAPI)中纳入碲化镉(CdTe)和铜铟镓硒(CIGS)作为无机吸收层的可行性。目的是研究它们在光吸收和电荷传输方面协同作用的潜力。研究结果表明,CIGS吸收层的性能优于这两种材料,效率达到15.67%。此外,对CIGS层进行了优化研究,提高了输出参数,包括最高效率达到28.32%。这项研究代表了在开发稳定高效的钙钛矿太阳能电池方面的重大进展。